1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
tensa zangetsu [6.8K]
3 years ago
7

Because oxygen only has 2 electrons in its inner shell and it needs 6 more to make 8. It binds with 6 hydrogens to fill up its s

hell.

Mathematics
1 answer:
leva [86]3 years ago
6 0

Answer: 1 13/21 Hope this helped!!

~Queen~

You might be interested in
Cindy's mom gave her $15. She also saves $5 each week to buy video games for her new game console. Write and solve an inequality
Elena L [17]
5x+15(greater than or equal to symbol) $210

210-15=195
195 divided by 5=39
So it will take her atleast 39 weeks to save up for the game
5 0
3 years ago
Use the commutative property of multiplication to write a related multiplication sentence. 9×4=36
Butoxors [25]
Using the commutative property would be: 4*9=36
4 0
4 years ago
Read 2 more answers
Find the sale price.<br> Original price: $50<br><br> Discount: 15%<br><br> Sale price: $
babunello [35]
$42.50

Giddy Up!!!!!!!!!!

8 0
3 years ago
Read 2 more answers
Integrating sums of functions
Andrei [34K]

Answer:

(a) -12

General Formulas and Concepts:

<u>Pre-Algebra</u>

Order of Operations: BPEMDAS

  1. Brackets
  2. Parenthesis
  3. Exponents
  4. Multiplication
  5. Division
  6. Addition
  7. Subtraction
  • Left to Right<u> </u>

Equality Properties

  • Multiplication Property of Equality
  • Division Property of Equality
  • Addition Property of Equality
  • Subtraction Property of Equality

<u>Calculus</u>

Integrals

Integration Rule [Reverse Power Rule]:                                                                    \displaystyle \int {x^n} \, dx = \frac{x^{n + 1}}{n + 1} + C

Integration Property [Swapping Limits]:                                                                \displaystyle \int\limits^b_a {f(x)} \, dx = -\int\limits^a_b {f(x)} \, dx

Integration Property [Multiplied Constant]:                                                           \displaystyle \int {cf(x)} \, dx = c \int {f(x)} \, dx

Integration Property [Addition/Subtraction]:                                                         \displaystyle \int {[f(x) \pm g(x)]} \, dx = \int {f(x)} \, dx \pm \int {g(x)} \, dx

Integration Property [Splitting Integral]:                                                                \displaystyle \int\limits^c_a {f(x)} \, dx = \int\limits^b_a {f(x)} \, dx + \int\limits^c_b {f(x)} \, dx

Integration Rule [Fundamental Theorem of Calculus 1]:                                      \displaystyle \int\limits^b_a {f(x)} \, dx = F(b) - F(a)  

Step-by-step explanation:

<u>Step 1: Define</u>

<u />\displaystyle \int\limits^6_4 {f(x)} \, dx = 5<u />

<u />\displaystyle \int\limits^4_{10} {f(x)} \, dx = 8<u />

<u />\displaystyle \int\limits^{10}_6 {[4f(x) + 10]} \, dx<u />

<u />

<u>Step 2: Solve Pt. 1</u>

  1. [Integral] Rewrite [Integration Property - Addition]:                                     \displaystyle \int\limits^{10}_6 {[4f(x) + 10]} \, dx = \int\limits^{10}_6 {4f(x)} \, dx + \int\limits^{10}_6 {10} \, dx
  2. [Integral] Rewrite [Integration Property - Multiplied Constant]:                   \displaystyle \int\limits^{10}_6 {[4f(x) + 10]} \, dx = 4\int\limits^{10}_6 {f(x)} \, dx + 10\int\limits^{10}_6 {} \, dx

<u>Step 3: Redefine</u>

<em>Manipulate the given integral values.</em>

  1. [Integrals] Combine [Integration Property - Splitting Integral]:                     \displaystyle \int\limits^6_4 {f(x)} \, dx + \int\limits^4_{10} {f(x)} \, dx = \int\limits^6_{10} {f(x)} \, dx
  2. [Integral] Rewrite:                                                                                           \displaystyle \int\limits^6_{10} {f(x)} \, dx = \int\limits^6_4 {f(x)} \, dx + \int\limits^4_{10} {f(x)} \, dx
  3. [Integral] Substitute in integrals:                                                                    \displaystyle \int\limits^6_{10} {f(x)} \, dx = 5 + 8
  4. [Integral] Add:                                                                                                 \displaystyle \int\limits^6_{10} {f(x)} \, dx = 13
  5. [Integral] Rewrite [Integration Property - Swapping Limits]:                        \displaystyle -\int\limits^{10}_6 {f(x)} \, dx = 13
  6. [Integral] [Division Property of Equality] Isolate integral:                             \displaystyle \int\limits^{10}_6 {f(x)} \, dx = -13

<u>Step 4: Solve Pt. 2</u>

  1. [Integral] Substitute in integral:                                                                     \displaystyle \int\limits^{10}_6 {[4f(x) + 10]} \, dx = 4(-13) + 10\int\limits^{10}_6 {} \, dx
  2. [Integral] Integrate [Integration Rule - Reverse Power Rule]:                      \displaystyle \int\limits^{10}_6 {[4f(x) + 10]} \, dx = 4(-13) + 10(x) \bigg| \limits^{10}_6
  3. [Integral] Evaluate [Integration Rule - FTC 1]:                                               \displaystyle \int\limits^{10}_6 {[4f(x) + 10]} \, dx = 4(-13) + 10(10 - 6)
  4. [Integral] (Parenthesis) Subtract:                                                                   \displaystyle \int\limits^{10}_6 {[4f(x) + 10]} \, dx = 4(-13) + 10(4)
  5. [Integral] Multiply:                                                                                           \displaystyle \int\limits^{10}_6 {[4f(x) + 10]} \, dx = -52 + 40
  6. [Integral] Add:                                                                                                 \displaystyle \int\limits^{10}_6 {[4f(x) + 10]} \, dx = -12

Topic: AP Calculus AB/BC

Unit: Integration

Book: College Calculus 10e

8 0
3 years ago
Wilson has 60 chocolates. He gives 30% of the chocolates to kids.write the number of chocolates that he gave to kids
mr Goodwill [35]
30% of 60 is 30/100 or 3/10 f 60
3/10 times 60=180/10=18
he gave 18
7 0
3 years ago
Read 2 more answers
Other questions:
  • Olga has 5 times as many dimes as nickels. if she has $3.30, how many of each coin does she have
    14·2 answers
  • AC=8x-14 and EC=2x+11, solve for x
    14·1 answer
  • I need help on this question. I need all the steps too, so please don’t just copy and paste something off of the internet.
    13·2 answers
  • Tomorrow, Mrs. Wendel's class will be using toothpicks for a science project. Each student must use at least 5 toothpicks for th
    10·1 answer
  • The equation of a circle is given below.
    10·1 answer
  • Whats the solution to this problem
    6·1 answer
  • *inhale* REEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEE
    6·1 answer
  • If TWO^2 = THREE where the alphabets are single-digit integers then find T + W + O​
    5·1 answer
  • Evaluate the expression when g = 6 and h = 7 <br> h + 9g
    12·2 answers
  • If your 9 right now, and in 11 years you'll be 20, how old will you be in 60 years?
    12·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!