Answer:
c. add coefficients as needed
Explanation:
A chemical equation is defined as the equation that shows changes in a chemical reaction. A chemical equation consist of reactant and product, reactant is at left side of the arrow and product is at right side of the arrow.
Reactant => Product
While balancing a chemical equation, the basic rule is to balance the coefficient as required. Coefficient represents the number of molecules and is used at front of a chemical symbol. Change in coefficient helps balance the number of atoms or molecules of the substances on both the sides of the arrow.
Subscripts are never allowed to change because it can change the chemical involved in the reaction.
Hence, the correct answer is "c. add coefficients as needed".
Answer:
0.15M
Explanation:
The equation for molarity is M= n/L. Where "M" is Molarity, "n" is the number of moles of solute, and "L" is the total liters in solution.
You need to calculate the number of moles from the given grams. The molar mass of KOH is (39.098+ 16 +1.008)= 56.106g. To calculate the mols of KOH,
×
= 0.44558... mol, you see that the grams unit cancel out leaving you with mol as the unit.
The volume is given in L already so no need to do any conversion. M=
= 0.1485M ≈ 0.15M
Answer:
Explanation:
stoichiometry of C₂H₂ to H₂O is 2:2.
Number of moles of C₂H₂ = molar mass of C₂H₂
Since the molar mass of C₂H₂ is 26 g/mol.
Number of C₂H₂ moles reacted = 64.0 g / 26 g/mol = 2.46 mol.
according to a molar ratio of 2:2.
the number of H₂O moles formed = a number of C₂H₂ moles reacted.
Therefore the number of H₂O moles produced = 2.46 mol
Answer:
121 K
Explanation:
Step 1: Given data
- Initial volume (V₁): 79.5 mL
- Initial temperature (T₁): -1.4°C
- Final volume (V₂): 35.3 mL
Step 2: Convert "-1.4°C" to Kelvin
We will use the following expression.
K = °C + 273.15 = -1.4°C + 273.15 = 271.8 K
Step 3: Calculate the final temperature of the gas (T₂)
Assuming ideal behavior and constant pressure, we can calculate the final temperature of the gas using Charles' law.
V₁/T₁ = V₂/T₂
T₂ = V₂ × T₁/V₁
T₂ = 35.3 mL × 271.8 K/79.5 mL = 121 K