50kg driving at 30kph because it’s the heaviest yet fastest!
Answer:
Wavelength=75 cm.
The wavelength well remain unchanged which is 75 cm.
Explanation:
The formula which will help us to answer the question is:
V=f*λ
Where:
V is the velocity
f is the frequency of wave
λ is the wave length
Now:
λ=V/f Eq (1)
The equation show's that wavelength is independent of the amplitude but it depends on the frequency and the velocity with which wave is moving.
The wavelength well remain unchanged which is 75 cm.
<span>Answer:
I'm pretty sure the SA / V ratio would get smaller. Assume that the cell is more or less spherical. SA = 4(pi)r^2, while V = (3/4)(pi)r^3. The ratio = (4(pi)r^2)/((3/4)(pi)r^3), which can be simplified to 3/r. Thus, the larger r gets, the smaller the ratio becomes.</span>
Answer:
F = 85696.5 N = 85.69 KN
Explanation:
In this scenario, we apply Newton's Second Law:

where,
F = Upthrust = ?
m = mass of space craft = 5000 kg
g = acceleration due to gravity on surface of Kepler-10b = (1.53)(9.81 m/s²)
g = 15.0093 m/s²
a = acceleration required = 2.13 m/s²
Therefore,

<u>F = 85696.5 N = 85.69 KN</u>
Because the tip of the moon's shadow ... the area of "totality" ... is never more than a couple hundred miles across, It never covers a single place for more than 7 minutes, and can never stay on the Earth's surface for more than a few hours altogether during one eclipse.
If you're not inside that small area, you don't see a total eclipse.