1. The problem statement, all variables and given/known data A parallel-plate capacitor of capacitance C with circular plates is charged by a constant current I. The radius a of the plates is much larger than the distance d between them, so fringing effects are negligible. Calculate B(r), the magnitude of the magnetic field inside the capacitor as a function of distance from the axis joining the center points of the circular plates. 2. Relevant equations When a capacitor is charged, the electric field E, and hence the electric flux Φ, between the plates changes. This change in flux induces a magnetic field, according to Ampère's law as extended by Maxwell: ∮B⃗ ⋅dl⃗ =μ0(I+ϵ0dΦdt). You will calculate this magnetic field in the space between capacitor plates, where the electric flux changes but the conduction current I is zero.
C good luck ok good luck with
Answer:
72.53 mi/hr
Explanation:
From the question given above, the following data were obtained:
Vertical distance i.e Height (h) = 8.26 m
Horizontal distance (s) = 42.1 m
Horizontal velocity (u) =?
Next, we shall determine the time taken for the car to get to the ground.
This can be obtained as follow:
Height (h) = 8.26 m
Acceleration due to gravity (g) = 9.8 m/s²
Time (t) =?
h = ½gt²
8.26 = ½ × 9.8 × t²
8.26 = 4.9 × t²
Divide both side by 4.9
t² = 8.26 / 4.9
Take the square root of both side by
t = √(8.26 / 4.9)
t = 1.3 s
Next, we shall determine the horizontal velocity of the car. This can be obtained as follow:
Horizontal distance (s) = 42.1 m
Time (t) = 1.3 s
Horizontal velocity (u) =?
s = ut
42.1 = u × 1.3
Divide both side by 1.3
u = 42.1 / 1.3
u = 32.38 m/s
Finally, we shall convert 32.38 m/s to miles per hour (mi/hr). This can be obtained as follow:
1 m/s = 2.24 mi/hr
Therefore,
32.38 m/s = 32.38 m/s × 2.24 mi/hr / 1 m/s
32.38 m/s = 72.53 mi/hr
Thus, the car was moving at a speed of
72.53 mi/hr.
Answer:
The angle of the incline above horizontal is 17.81 degrees.
Explanation:
Given that,
Mass of the object, m = 4 kg
Acceleration of the object above the incline, 
We need to find the angle of the incline above horizontal. The net force acting on the object along the incline is given by :






So, the angle of the incline above horizontal is 17.81 degrees. Hence, this is the required solution.
Answer:
a) m = 993 g
b) E = 6.50 × 10¹⁴ J
Explanation:
atomic mass of hydrogen = 1.00794
4 hydrogen atom will make a helium atom = 4 × 1.00794 = 4.03176
we know atomic mass of helium = 4.002602
difference in the atomic mass of helium = 4.03176-4.002602 = 0.029158
fraction of mass lost =
= 0.00723
loss of mass for 1000 g = 1000 × 0.00723 = 7.23
a) mass of helium produced = 1000-7.23 = 993 g (approx.)
b) energy released in the process
E = m c²
E = 0.00723 × (3× 10⁸)²
E = 6.50 × 10¹⁴ J