Answer:


Explanation:
Given that height of the projectile as a function of time is

here we know that
h = 147 ft
so from above equation


now by solving above quadratic equation we know that


<h3><u>Answer;</u></h3>
<u> = 55.2 Coulombs </u>
<h3><u>Explanation</u>;</h3>
We can determine Charge using the formula
Q =It, where Q is the amount of charge in Coulombs, I is the current in amperes and t is the time in seconds.
I = 0.92 amperes, t = 1 minute or 60 seconds
Charge = 0.92 × 60
<u> = 55.2 Coulombs </u>
Answer:
B. The buoyant force on the copper block is greater than the buoyant force on the lead block.
Explanation:
Given;
mass of lead block, m₁ = 200 g = 0.2 kg
mass of copper block, m₂ = 200 g = 0.2 kg
density of water, ρ = 1 g/cm³
density of lead block, ρ₁ = 11.34 g/cm³
density of copper block, ρ₂ = 8.96 g/cm³
The buoyant force on each block is calculated as;

The buoyant force of lead block;

The buoyant force of copper block

Therefore, the buoyant force on the copper block is greater than the buoyant force on the lead block
When Venus put in a different battery with higher voltage ... no matter
what other components were in the circuit ... the voltage across the
light bulb, and the current through it, both had to increase, and the
light bulb had to shine brighter than before.