Answer:
13.567%
Step-by-step explanation:
We solve the above question, using z score formula
z = (x-μ)/σ, where
x is the raw score = 23.1 ounces
μ is the population mean = 22.0 ounces
σ is the population standard deviation = 1.0 ounce
More than = Greater than with the sign = >
Hence, for x > 23.1 ounces
z = 23.1 - 22.0/1.0
= 1.1
Probability value from Z-Table:
P(x<23.1) = 0.86433
P(x>23.1) = 1 - P(x<23.1)
P(x>23.1) = 1 - 0.86433
P(x>23.1) = 0.13567
Converting to percentage
= 0.13567 × 100
= 13.567%
Therefore, the percentage of regulation basketballs that weigh more than 23.1 ounces is 13.567%
Kate can travel 41.33 miles without exceeding her limit. This problem can be solved by using y = 2.25x + 7 linear equation with the "y" variable as the total cost that Kate must pay after she has traveled with the cab and the "x" variable as Kate's traveling distance. The equation has 7 for its constant value which is the $7 flat rate. We will find 41.33 miles as the traveling distance if we substituted the total cost with 100, which is the maximum amount that can be paid by Kate for the traveling purpose.
8 as that means what two of the same number makes up , in this case 64. 8x8=64
Answer:
625: 1296
Step-by-step explanation:
625: 1296 cannot be further simplified because they share no common factor. The decimal form around 0.5822531