Answer:

Explanation:
Hello there!
In this case, since the equation for the calculation of dilutions is:

Whereas M is the molarity and V the volume, because the final concentration is lower than the initial. Thus, since we are asked to calculate the final volume, we solve for V2 as follows:

Best regards!
Answer is: <span>the empirical formula of the hydrocarbon is CH</span>₂.<span>
Chemical reaction: C</span>ₓHₐ + O₂ → xC + a/2H₂O.<span>
m(CO</span>₂) = 33.01 g.
n(CO₂) = m(CO₂) ÷ M(CO₂).
n(CO₂) = 33.01 g ÷ 44.01 g/mol.
n(CO₂) = n(C) = 0.75 mol.
m(H₂O) = 13.52 g.
n(H₂O) = 13.52 g ÷ 18 g/mol.
n(H₂O) = 0.75 mol.
n(H) = 2 · n(H₂O) = 1.5 mol.
n(C) : n(H) = 0.75 mol : 1.5 mol /0.75 mol.
n(C) : n(H) = 1 : 2.
The best answer among the choices is the first option. The chemical property of soda is that it is a highly basic substance. Its chemical name is sodium carbonate. It is more basic than sodium bicarbonate. Adding soda ash in a solution would increase the pH of the solution.
Answer:
120,180,90.
Explanation:
PF3Br2 has a trigonal bypiramidal geometry. The three atoms of F will be arranged around the P atom in the same plane and each F-P-F bond will have an angle of 120 degrees. There will be only one Br atom above and beneath the P atom so the bond angle for Br-P-Br will be 180 degrees. Finally, the F−P−Br bond angle will be at 90 degrees.