1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
PilotLPTM [1.2K]
3 years ago
9

A hose on the ground projects a water current upwards at an angle 40 to the horizontal at velocity 20 m/s find height at which w

ater hits a wall at 8 m away from the hose (consider that acceleration due to gravity =9.8 m/s2)
Physics
1 answer:
irinina [24]3 years ago
5 0

Answer:

<em>The water hits the wall at a height of 5.38 m</em>

Explanation:

<u>Projectile Motion </u>

It's the type of motion that experiences an object projected near the Earth's surface and moves along a curved path exclusively under the action of gravity.

The object describes a parabolic path given by the equation:

{\displaystyle y=\tan(\theta )\cdot x-{\frac {g}{2v_{0}^{2}\cos ^{2}\theta }}\cdot x^{2}}

Where:

y   = vertical displacement

x   = horizontal displacement

θ   = Elevation angle

vo = Initial speed

The hose projects a water current upwards at an angle of θ=40° at a speed vo=20 m/s.

The height at which the water hits a wall located at x=8 m from the hose is:

{\displaystyle y=\tan40^\circ\cdot 8-{\frac {9.8}{2*20^{2}\cos ^{2}40^\circ }}\cdot 8^{2}}

Calculating:

y = 5.38 m

The water hits the wall at a height of 5.38 m

You might be interested in
A runner begins a race from the starting line and accelerates to a speed of 8.9 m/s. If it takes the runner 3 seconds to reach h
stellarik [79]

Answer:

i believe its 26.7

Explanation:

if the runner goes 8.9 m/s each second while accelerating for 3 seconds to reach top speed, the top speed would be 26.7 m/s

4 0
2 years ago
Read 2 more answers
The electric field of a sinusoidal electromagnetic wave obeys the equation E = (375V /m) cos[(1.99× 107rad/m)x + (5.97 × 1015rad
kenny6666 [7]

Answer:

a)  v = 2,9992 10⁸ m / s , b)  Eo = 375 V / m ,  B = 1.25 10⁻⁶ T,

c)     λ = 3,157 10⁻⁷ m,   f = 9.50 10¹⁴ Hz ,  T = 1.05 10⁻¹⁵ s , UV

Explanation:

In this problem they give us the equation of the traveling wave

        E = 375 cos [1.99 10⁷ x + 5.97 10¹⁵ t]

a) what the wave velocity

all waves must meet

        v = λ f

In this case, because of an electromagnetic wave, the speed must be the speed of light.

        k = 2π / λ

        λ = 2π / k

        λ = 2π / 1.99 10⁷

        λ = 3,157 10⁻⁷ m

        w = 2π f

        f = w / 2 π

        f = 5.97 10¹⁵ / 2π

        f = 9.50 10¹⁴ Hz

the wave speed is

        v = 3,157 10⁻⁷   9.50 10¹⁴

        v = 2,9992 10⁸ m / s

b) The electric field is

           Eo = 375 V / m

to find the magnetic field we use

           E / B = c

           B = E / c

            B = 375 / 2,9992 10⁸

            B = 1.25 10⁻⁶ T

c) The period is

           T = 1 / f

            T = 1 / 9.50 10¹⁴

            T = 1.05 10⁻¹⁵ s

the wavelength value is

          λ = 3,157 10-7 m (109 nm / 1m) = 315.7 nm

this wavelength corresponds to the ultraviolet

5 0
4 years ago
Does the air exert a buoyant force on all objects in air or only on objects such as balloons that are very light for their size?
Citrus2011 [14]

Answer:

See explanation

Explanation:

Solution:-

Buoyancy is the force that causes objects to float. It is the force exerted on an object that is partly or wholly immersed in a fluid. Buoyancy is caused by the differences in pressure acting on opposite sides of an object immersed in a static fluid. It is also known as the buoyant force. Buoyancy is the phenomena due to Buoyant Force.

It is as an upward force exerted by a fluid that opposes the weight of an object immersed in a fluid. As we know, the pressure in a fluid column increases with depth. Thus, the pressure at the bottom of an object submerged in the fluid is greater than that at the top. The difference in this pressure results in a net upward force on the object which we define as buoyancy.

- The formula for buoyant force (Fb) is given:

                           Fb = ρ*g*V

- The force acts on all objects. However, it depends on the fluid density and amount of volume displaced.

- The Buoyant force exerted by air with density = 1.225 kg/m^3 on an object with volume (V) is:

                          Fb = ρ*g*V = 1.225*9.81*V = 12.02*V

- For the similar object with mass (m), the downward weight would be:

                           W = m*g

- For the object to float the buoyant force (Fb) must be greater than weight of the object:

                          Fb > W

                          12.02*V > m*9.81

                          V / m > 0.816

- The ratio of V / m must be at-least = 0.816.

- Assuming the object is fully immersed in air, then the volume displaced V = ρ_material*V

                         ρ_material < 1 / 0.816

                        ρ_material < 1.225 or ( ρ_air )

- So the for an object to float in air its material density must always be less than that of air. That why in balloons lighter gas is used which have density less than that of air like Helium.          

4 0
4 years ago
If, while standing on the bank of a stream, you wished to spear a fish swimming in the water out in front of you, would you aim
Serggg [28]

Answer:

<em>a) below the observed position</em>

<em>b) directly at the observed position</em>

<em></em>

Explanation:

If I'm standing on the bank of a stream, and I wish to spear a fish swimming in the water out in front of me, I would aim below the observed fish to make a direct hit. This is because the phenomenon of refraction of light in water causes the light coming from the fish is refract away from the normal as it passes  into the air and into my eyes.

If I'm to zap the fish with a taser, I would aim directly at the observed fish because the laser (a form of concentrated light waves) will refract into the water, taking the same path the light from the fish took to get to my eyes.

3 0
3 years ago
What quantities determine the resistance of a piece of material? Choose all that apply.
bija089 [108]

Answer:

Option (a), (b) and (c)

Explanation:

The resistance of a conductor depends on the length of the conductor, area of crossection of the conductor and the nature of the conductor.

The formula for the resistance is given by

R = ρ x l / A

Where, ρ is the resistivity of the conductor, l be the length of the conductor and A be the area of crossection of the conductor.

So, It depends on the length, area and the type of material.

7 0
3 years ago
Other questions:
  • A 92-kg rugby player running at 7.5 m/s collides in midair with a 112-kg player moving in the opposite direction. After the coll
    7·1 answer
  • A bird can fly 25 km/h. How long does it take to fly 3.5km?
    12·1 answer
  • A child carries a 3N book at a constant velocity 4 meters across a horizontal floor. What is the net work done?
    9·1 answer
  • Tell whether the following statements are true or false:
    13·1 answer
  • Describe why we cannot see details on the surface of Mars.​
    15·2 answers
  • A cabinet weighing 100 N is placed on a floor. The amount of contact area between the cabinet and the floor is 0.5 m2. How much
    5·1 answer
  • In your research lab, a very thin, flat piece of glass with refractive index 1.50 and uniform thickness covers the opening of a
    11·1 answer
  • State a situation in which force is applied on a body, but no work is done​
    12·2 answers
  • If an object travels 245 km in 5 hours, what was the speed of the object?
    15·1 answer
  • The length of a soild of a metallic cube at 20°C is 5•0cm. Given that the linear expansivity of the metal is 4×^-5k^-1. Find the
    7·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!