First question (upper left):
1/Req = 1/12 + 1/24 = 1/8
Req = 8 ohms
Voltage is equal through different resistors, and V1 = V2 = 24 V.
Current varies through parallel resistors: I1 = V1/R1 = 24/12 = 2 A. I2 = 24/24 = 1 A.
Second question (middle left):
V1 = V2 = 6 V (parallel circuits)
I1 = 2 A, I2 = 1 A, IT = 2+1 = 3 A.
R1 = V1/I1 = 6/2 = 3 ohms, R2 = 6/1 = 6 ohms, 1/Req = 1/2 + 1/1, Req = 2/3 ohms
Third question (bottom left):
V1 = V2 = 12 V
IT = 3 A, meaning Req = V/It = 12 V/3 A = 4 ohms
1/Req = 1/R1 + 1/R2, 1/4 = 1/12 + 1/R2, R2 = 6 ohms
I1 = V/R1 = 1 A, I2 = V/R2 = 2 A
Fourth question (top right):
1/Req = 1/20 + 1/20, Req = 10 ohms
IT = 4 A, so VT = IT(Req) = 4*10 = 40 V
Parallel circuits, so V1 = V2 = VT = 40 V
Since the resistors are identical, the current is split evenly between both: I1 = I2 = IT/2 = 2 A.
Fifth question (middle right):
1/Req = 1/5 + 1/20 + 1/4, Req = 2 ohms
IT = VT/Req = 40 V/2 ohms = 20 A
V1 = V2 = V3 = 40 V
The current of 20 A will be divided proportionally according to the resistances of 5, 20, and 4, the factors will be 5/(5+20+4), 20/(5+20+4), and 4/(5+20+4), which are 5/29, 20/29, and 4/29.
I1 = 20(5/29) = 100/29 A
I2 = 20(20/29) = 400/29 A
I3 = 20(4/29) = 80/29 A
Sixth question (bottom right):
V2 = 30V is given, but since these are parallel circuits, V1 = VT = 30 V.
Then I1 = V1/R1 = 30 V/10 ohms = 3 A.
I2 = 30 V/15 ohms = 2 A.
IT = 3 + 2 = 5 A
1/Req = 1/10 + 1/15, Req = 6 ohms
<span>95 km/h = 26.39 m/s (95000m/3600 secs)
55 km/h = 15.28 m/s (55000m/3600 secs)
75 revolutions = 75 x 2pi = 471.23 radians
radius = 0.80/2 = 0.40m
v/r = omega (rad/s)
26.39/0.40 = 65.97 rad/s
15.28/0.40 = 38.20 rad/s
s/((vi + vf)/2) = t
471.23 /((65.97 + 38.20)/2) = 9.04 secs
(vf - vi)/t = a
(38.20 - 65.97)/9.04 = -3.0719
The angular acceleration of the tires = -3.0719 rad/s^2
Time is required for it to stop
(0 - 38.20)/ -3.0719 = 12.43 secs
How far does it go?
65.97 - 38.20 = 27.77 M</span>
The ground exerts an equal force on the golf ball.
Answer:
The correct answer is B)
Explanation:
When a wheel rotates without sliding, the straight-line distance covered by the wheel's center-of-mass is exactly equal to the rotational distance covered by a point on the edge of the wheel. So given that the distances and times are same, the translational speed of the center of the wheel amounts to or becomes the same as the rotational speed of a point on the edge of the wheel.
The formula for calculating the velocity of a point on the edge of the wheel is given as
= 2π r / T
Where
π is Pi which mathematically is approximately 3.14159
T is period of time
Vr is Velocity of the point on the edge of the wheel
The answer is left in Meters/Seconds so we will work with our information as is given in the question.
Vr = (2 x 3.14159 x 1.94m)/2.26
Vr = 12.1893692/2.26
Vr = 5.39352619469
Which is approximately 5.39
Cheers!