Answer:
B) the average distance from the Earth to the Sun
Explanation:
Answer:
(a) v = 5.42m/s
(b) vo = 4.64m/s
(c) a = 2874.28m/s^2
(d) Δy = 5.11*10^-3m
Explanation:
(a) The velocity of the ball before it hits the floor is given by:
(1)
g: gravitational acceleration = 9.8m/s^2
h: height where the ball falls down = 1.50m

The speed of the ball is 5.42m/s
(b) To calculate the velocity of the ball, after it leaves the floor, you use the information of the maximum height reached by the ball after it leaves the floor.
You use the following formula:
(2)
vo: velocity of the ball where it starts its motion upward
You solve for vo and replace the values of the parameters:

The velocity of the ball is 4.64m/s
(c) The acceleration is given by:


The acceleration of the ball is 2874.28/s^2
(d) The compression of the ball is:

THe compression of the ball when it strikes the floor is 5.11*10^-3m
Answer:
C. Just measure the volume of the container it is in
Explanation:
Another why of measuring the volume of gas is by filling a contractor with water then in invert a glass jar air will miss place the space taken by water then measure the volume of water misplaced to get the volume to air
The right answer for the question that is being asked and shown above is that: "A.tectonic activity concentrated in certain areas." A piece of evidence did Alfred Wegener use to develop the theory of continental drift is that <span>A.tectonic activity concentrated in certain areas</span>
Answer:
28 m/s^2
Explanation:
distance, s = 14 m
time, t = 2 - 1 = 1 s
initial velocity, u = 0 m/s
Let a be the acceleration.
Use third equation of motion


a = 28 m/s^2
Thus, the acceleration is 28 m/s^2.