Answer:
v = √[gR (sin θ - μcos θ)]
Explanation:
The free body diagram for the car is presented in the attached image to this answer.
The forces acting on the car include the weight of the car, the normal reaction of the plane on the car, the frictional force on the car and the net force on the car which is the centripetal force on the car keeping it in circular motion without slipping.
Resolving the weight into the axis parallel and perpendicular to the inclined plane,
N = mg cos θ
And the component parallel to the inclined plane that slides the body down the plane at rest = mg sin θ
Frictional force = Fr = μN = μmg cos θ
Centripetal force responsible for keeping the car in circular motion = (mv²/R)
So, a force balance in the plane parallel to the inclined plane shows that
Centripetal force = (mg sin θ - Fr) (since the car slides down the plane at rest, (mg sin θ) is greater than the frictional force)
(mv²/R) = (mg sin θ - μmg cos θ)
v² = R(g sin θ - μg cos θ)
v² = gR (sin θ - μcos θ)
v = √[gR (sin θ - μcos θ)]
Hope this Helps!!!
Use VFR1 = VFR2 to discover the velocity at in the hose VFR =
A * V
D hose =10 * D nozzle, R hose = 5 * D nozzle
Area of a circle = πR^2
Area h=3.14*25*D^2 = 75.5D^2
(Radius=Diameter/2) area n = 3.14*(D^2/4) = .785D^2
Use VFR = VFR v2 = 0.4m/s
0.4*.785D^2 = 75.5*D^2* v1 D^2
= .314 =75.5*V1
v1 = 0.004m/s
Now we have the velocity, we can use Bernoulli's equation.
P1+ρgh1+ρV1^2 /2 = constant
There is no atmospheric pressure before so the P1= the gauge
pressure at the pump, let’s call the height of the hose 0m and the height of
the nozzle 1m so the is no ρgh1 Likewise, there is only atmospheric pressure at
the nozzle which is 100000 PA, and lastly the density ρ of water is 1000 KG/M^3
Pg + 1000*.004^2/2 = 100000+1000*9.8*1+ 1000*0.4^2/2
Pg + .008= 100000+9800+80
Pg+.008= 109880
Pg=109880.008 PA
The reason why it relates to the newtons 3 laws of motion because the first law of motion states that every object will stay at rest unless it's moved by an unbalanced force which is your hand. The second one states that <span> the velocity of an object changes when it is subjected to an external force meaning it's used by the equation that is commonly used for which is F=M*A. The way it relates to the second law because you are adding force some way or another, the mass is the egg and the acceleration is the drop of the egg while it free falls. And the last one, for a reaction there is always an equal or opposite reaction and the opposite reaction is the floor because it's going against the egg causing it to crack. If it was with the egg, it would have a soft, smooth landing.</span>
Answer & Explanation:
We can model the amount of substance remaining, S, after time, t, with the equation
, where
A is the quantity at time t = 0.
Divide both sides by A and multiply by 100 to obtain % remaining after t minutes.
100xS/A = 100x0.5^(-t/3)
The magnetic force is a consequence of the electromagnetic force, one of the four fundamental forces of nature, and is caused by the motion of charges.