Answer:
a) Frope= 71.7 N
b) Frope=6.7 N
Explanation:
In the figure the skier is simulated as an object, "a box".
a) At constant velocity we can say that the object is in equilibrium, so we apply the Newton's first law:
∑F=0
Frope=w*sen6.8°
Frope=71.71N
Take into account that w is the weight that is calculated as mass per gravitiy constant:
w=m*g


b) In this case the system has an acceleration of 0.109m/s2. Then, we apply Newton's second law of motion:
F=m*a
F=61.8Kg*0.109m/s2
Frope=6.73N
a)
Y₀ = initial position of the stone at the time of launch = 0 m
Y = final position of stone = 20.0 meters
a = acceleration = - 9.8 m/s²
v₀ = initial speed of stone at the time of launch = 30.0 m/s
v = final speed = ?
Using the equation
v² = v₀² + 2 a (Y - Y₀)
inserting the values
v² = 30² + 2 (- 9.8) (20 - 0)
v = 22.5 m/s
b)
Y₀ = initial position of the stone at the time of launch = 0 m
Y = maximum height gained
a = acceleration = - 9.8 m/s²
v₀ = initial speed of stone at the time of launch = 30.0 m/s
v = final speed = 0 m/s
Using the equation
v² = v₀² + 2 a (Y - Y₀)
inserting the values
0² = 30² + 2 (- 9.8) (Y - 0)
Y = 46 m
It’s c because it’s not Control so that means that it would be broken and non fix able
If I remember correctly, it is the 3rd answer choice.
Answer:
94
Explanation:
f = 2.57 x 10^13 Hz
E = 10 eV = 10 x 1.6 x 10^-19 J = 1.6 x 10^-18 J
Energy of each photon = h f
Where, h is Plank's constant
Energy of each photon = 6.63 x 10^-34 x 2.57 x 10^13 = 1.7 x 10^-20 J
Number of photons = Total energy / energy of one photon
N = (1.6 x 10^-18) / (1.7 x 10^-20) = 94.11 = 94