Answer:



- Our final answer is 15 kg .
----------- HappY LearninG<3 ------------
Explanation:
Usually when we think of waves, we think of transverse waves. These are waves where points move up and down perpendicular to the motion of the wave. Examples include water waves, whipping a rope, or even doing the "wave" in a crowd. You can think of these as "two dimensional" waves.
Longitudinal waves are waves where points move left or right, parallel to the motion of the wave. In other words, there is compression and expansion of the medium. Examples include sound waves, or pulses in a slinky.
Speed is the distance travelled by an object whereas velocity is distance travelled by an object per unit time in a given direction.
Answer:
The number is 
Explanation:
From the question we are told that
The wavelength is 
The length of the glass plates is 
The distance between the plates (radius of wire ) = 
Generally the condition for constructive interference in a film is mathematically represented as
![2 * t = [m + \frac{1}{2} ]\lambda](https://tex.z-dn.net/?f=2%20%2A%20%20t%20%20%3D%20%5Bm%20%2B%20%20%5Cfrac%7B1%7D%7B2%7D%20%20%5D%5Clambda)
Where t is the thickness of the separation between the glass i.e
t = 0 at the edge where the glasses are touching each other and
t = 2d at the edge where the glasses are separated by the wire
m is the order of the fringe it starts from 0, 1 , 2 ...
So
![2 * 2 * d = [m + \frac{1}{2} ] 520 *10^{-9}](https://tex.z-dn.net/?f=2%20%2A%20%202%20%2A%20d%20%20%20%3D%20%5Bm%20%2B%20%20%5Cfrac%7B1%7D%7B2%7D%20%20%5D%20520%20%2A10%5E%7B-9%7D)
=> ![2 * 2 * (2.8 *10^{-5}) = [m + \frac{1}{2} ] 520 *10^{-9}](https://tex.z-dn.net/?f=2%20%2A%20%202%20%2A%20%20%20%282.8%20%2A10%5E%7B-5%7D%29%20%3D%20%5Bm%20%2B%20%20%5Cfrac%7B1%7D%7B2%7D%20%20%5D%20520%20%2A10%5E%7B-9%7D)
=>

given that we start counting m from zero
it means that the number of bright fringes that would appear is

=> 
=> 
Answer:
please find the solution which is defined as follows:
Explanation:
Throughout the opposite direction, she not able to throw her tool-belt. In this scenario, she will be sending her floating through her ship. Unless interrupted, it could refer to Newton's The rule of it in motion remains in motion. Consequently, if they throw it one way because there are no molecules to interrupt your course, you can continue to go the other way.