Answer:
<h2>12 m/s²</h2>
Explanation:
The acceleration of an object given it's mass and the force acting on it can be found by using the formula

f is the force
m is the mass
From the question
f = 6000 N
m = 500 kg
We have

We have the final answer as
<h3>12 m/s²</h3>
Hope this helps you
Answer:
f = 931.1 Hz
Explanation:
Given,
Mass of the wire, m = 0.325 g
Length of the stretch, L = 57.7 cm = 0.577 m
Tension in the wire, T = 650 N
Frequency for the first harmonic = ?
we know,

μ is the mass per unit length
μ = 0.325 x 10⁻³/ 0.577
μ = 0.563 x 10⁻³ Kg/m
now,

v = 1074.49 m/s
The wire is fixed at both ends. Nodes occur at fixed ends.
For First harmonic when there is a node at each end and the longest possible wavelength will have condition
λ=2 L
λ=2 x 0.577 = 1.154 m
we now,
v = f λ


f = 931.1 Hz
The frequency for first harmonic is equal to f = 931.1 Hz
Calculated weight (by experimentally) of Earth is 5.972 × 10²⁴ N
Hope this helps!
The μs between the clock and floor is 650(M*g) and the μk between the clock and the floor is 560(M*g)
Answer:
9.8 × 10⁴Pa
Explanation:
Given:
Velocity V₁ = 12m/s
Pressure P₁ = 3 × 10⁴ Pa
From continuity equation we have
ρA₁V₁ = ρA₂V₂
A₁V₁ = A₂V₂
making V₂ the subject of the equation;

the pipe is widened to twice its original radius,
r₂ = 2r₁
then the cross-sectional area A₂ = 4A₁
⇒ 

This implies that the water speed will drop by a factor of
because of the increase the pipe cross-sectional area.
The Bernoulli Equation;
Energy per unit volume before = Energy per unit volume after
p₁ +
ρV₁² + ρgh₁ = p₂ +
ρV₂² + ρgh₂
Total pressure is constant and
= P =
ρV₂²ρV²
p₁ +
ρV₁² = p₂ +
ρV₂²
Making p₂ the subject of the equation above;
p₂ = p₁ +
ρV₁² -
ρV₂²
But
so,
p₂ = p₁ +
ρV₁² -
ρ
p₂ = 3.0 x 10⁴ + (
× 1000 × 12²) - (
× 1000 × 12²/4² )
P₂ = 3.0 x 10⁴ + 7.2 × 10⁴ - 4.05 x 10³
P₂ = 9.79 × 10⁴Pa
P₂ = 9.8 × 10⁴Pa