Answer:
K = [H₂]² [ O₂] / [H₂O]²
Explanation:
The equilibrium constant of any reaction can be written as,
K = [product]/ [reactant]
For given reaction:
Chemical equation:
2H₂O → 2H₂ + O₂
equilibrium constant:
K = [H₂] [ O₂] / [H₂O]
In stoichiometric calculations, we will put the coefficient of balanced equation in given equilibrium constant equation.
K = [H₂]² [ O₂] / [H₂O]²
Answer:
The correct answer is 4
Explanation:
Boron trifluoride (BF₃) has a molecular geometry (as shown in the image in the question) referred to as trigonal planar; this is because each of the the fluorine atoms/molecules (bonded to the central boron atom) is placed in such a way that they form the three "end points"/"domains" of an equilateral triangle. Hence, the correct option is the last option.
For the reaction 2 K + F2 --> 2 KF,
consider K atomic wt. = 39
23.5 g of K = 0.603 moles, hence following the molar ratio of the balanced equation, 0.603 moles of potassium will use 0.3015 moles of F2. (number of moles, n = 0.3015)
Now, following the ideal gas equation, PV = nRT
P = 0.98 atm
V = unknown
n = 0.3015 moles
R = 82.057 cm^3 atm K^-1mole^-1 (unit of R chosen to match the units of other parameters; see the reference below)
T = 298 K
Solving for V,
V = (nRT)/P = (0.3015 mol * 82.057 cm^3 atm K^-1 mol^-1 * 298 K)/(0.98 atm)
<span>
solve it to get 7517.6 cm^3 as the volume of F2 = 7.5176 liters of F2 gas is needed. </span>
They are both physical changes (change in physical structure/appearance)
hope this helps :)