The lengths of the line segments are summarized in the following list:
- DF = 3
- DE = 8 / 3
- FG = 3
- FH = 9 / 2
- GH = 3 / 2
- EH = - 11 / 6
<h3>How to calculate the length of a line segment based on point set on a number line</h3>
Herein we have a number line with five points whose locations are known. The length of each line segment is equal to the arithmetical difference of the coordinates of the rightmost point and the leftmost point:
DF = - 1 - (- 4)
DF = 3
DE = (- 1 - 1 / 3) - (- 4)
DE = 3 - 1 / 3
DE = 8 / 3
FG = 2 - (- 1)
FG = 3
FH = (3 + 1 / 2) - (- 1)
FH = 4 + 1 / 2
FH = 9 / 2
GH = (3 + 1 / 2) - 2
GH = 1 + 1 / 2
GH = 3 / 2
EH = (3 + 1 / 2) + (- 1 - 1 / 3)
EH = - 2 + (1 / 2 - 1 / 3)
EH = - 2 + 1 / 6
EH = - 11 / 6
To learn more on lengths: brainly.com/question/8552546
#SPJ1
So this is how we are going to solve for the given problem above.
Given that x = number of large boxes
and 120-x = number of small boxes.
So here is the solution:
50x + (120-x)20 = 4050
50x + 2400 - 20x = 4050
30x + 2400 = 4050
30x = 4050 - 2400
30x = 1650 <<divide both sides by 30
x = 55.
Therefore, there are 55 large boxes
120 - x = small boxes
120 - 55 = 65 small boxes.
Hope this is the answer that you are looking for.
Let me know if you need more help next time!
Answer:
Continuous random variables: c and e
Discrete random variables: a, b, d
Step-by-step explanation:
We have to identify whether the random variable is discrete or continuous.
- A discrete variable is a variable whose value is obtained by counting.
- A continuous random variable X takes all values in a given interval of numbers.
- Thus, a continuous variable can have values in decimals but a discrete random variable cannot take values in decimals.
a. The number of statistics students now reading a book.
Discrete random variable since number of students cannot take decimal values.
b. The number of textbook authors now sitting at a computer.
Discrete random variable since number of textbooks cannot be expressed in decimals but counted.
c. The exact time it takes to evaluate 27 plus 72.
It is a continuous random variable as it may take all values within an interval of time.
d. The number of free dash throw attempts before the first shot is made.
It is a discrete random variable since the number of throws can always be whole number.
e. The time it takes to fly from City Upper A to City Upper B.
Time is a continuous random variable.
Step-by-step explanation:
Taking the first coordinate point (3,16.5)
where x= 3 and y= 16.5



optionB