Answer:
magnesium + hydrochloric acid → hydrogen gas + magnesium chloride
explanation:
the nitrogen in HNO3 is in the +5 oxidation state and is easily reduced. The reduction would result in the oxidation of the hydrogen gas, forming the water once again.The sulfur in H2SO4 is also in its highest oxidation state, +6.
<em>Hope</em><em> this</em><em> helps</em><em> </em><em>:</em><em>)</em>
Melted rock and minerals below the earth's crust is also known as magma
Answer:
See detailed explanation.
Explanation:
Hello!
i. In this case, since the given chemical reaction is exothermic due to the negative change in the enthalpy of reaction, we infer that according to the mentioned principle, by lowering the temperature the reaction will shift rightwards and therefore the yield is increased; thus, you need a lower temperature than the specified.
ii. In this case, since the reaction has less moles at the products side, according to the mentioned principle it'd be necessary to rise the pressure in order to increase the yield, since the increase of pressure favors the reaction side with the fewest number of moles.
Best regards!
Answer:
25.7 kJ/mol
Explanation:
There are two heats involved.
heat of solution of NH₄NO₃ + heat from water = 0
q₁ + q₂ = 0
n = moles of NH₄NO₃ = 8.00 g NH₄NO₃ × 1 mol NH₄NO₃/80.0 g NH₄NO₃
∴ n = 0.100 mol NH₄NO₃
q₁ = n * ΔHsoln = 0.100 mol * ΔHsoln
m = mass of solution = 1000.0 g + 8.00 g = 1008.0 g
q₂ = mcΔT = 58.0 g × 4.184 J°C⁻¹ g⁻¹ × ((20.39-21)°C) = -2570.19 J
q₁ + q₂ = 0.100 mol ×ΔHsoln – 2570.19 J = 0
ΔHsoln = +2570.19 J /0.100 mol = +25702 J/mol = +25.7 kJ/mol