The empirical and molecular formulas will be
and
respectively.
<h3>Empirical and molecular formula</h3>
The compound contains C, H, and O.
C = 61.15/12 = 5.0958
H = 5.3/1 = 5.3
O = 31.55/16 = 1.9719
Divide by the smallest
C = 2.6
H = 2.7
O = 1
Thus, the empirical formula is 
Empirical formula mass = (12x5) + (1x5) + 16x2 = 97
n = 152.15/97 = 2
The molecular formula is 
More on molecular and empirical formulas can be found here: brainly.com/question/14425592
#SPJ1
Answer:
nickel and Technetium are both solids
Explanation:
Answer:
a compound
Explanation:
a compound consists of two or more elements combined
Negative because it'll have to gain an electron
<h2>

=
![\dfrac{[H^{+}] [A^{-}]}{[HA]}](https://tex.z-dn.net/?f=%5Cdfrac%7B%5BH%5E%7B%2B%7D%5D%20%5BA%5E%7B-%7D%5D%7D%7B%5BHA%5D%7D)
</h2>
Explanation:
- When an aqueous solution of a certain acid is prepared it is dissociated is as follows-
⇄ 
Here HA is a protonic acid such as acetic acid, 
- The double arrow signifies that it is an equilibrium process, which means the dissociation and recombination of the acid occur simultaneously.
- The acid dissociation constant can be given by -
= ![\dfrac{[H^{+}] [A^{-}]}{[HA]}](https://tex.z-dn.net/?f=%5Cdfrac%7B%5BH%5E%7B%2B%7D%5D%20%5BA%5E%7B-%7D%5D%7D%7B%5BHA%5D%7D)
- The reaction is can also be represented by Bronsted and lowry -
⇄ ![[H_3O^+] [A^-]](https://tex.z-dn.net/?f=%5BH_3O%5E%2B%5D%20%5BA%5E-%5D)
- Then the dissociation constant will be
= ![\dfrac{[H_3O^{+}] [A^{-}]}{[HA]}](https://tex.z-dn.net/?f=%5Cdfrac%7B%5BH_3O%5E%7B%2B%7D%5D%20%5BA%5E%7B-%7D%5D%7D%7B%5BHA%5D%7D)
Here,
is the dissociation constant of an acid.