Answer:
The velocity of the pin is opposite its acceleration on the way up.
(d) option is correct.
Explanation:
when the juggler throws a bowling pin straight in the air, the acceleration working on the pin is in the downward direction due to the gravitational force of the earth.
According to Newton's Universal Law of Gravitation
''The gravitational force is a force that attracts any objects with mass''
Answer:
yes
Explanation:
Nuclear fusion is a reaction in which two or more atomic nuclei are combined to form one or more different atomic nuclei and subatomic particles.
A calorimeter is can be used to measure the amount of heat released or involved in a chemical reaction. Whereas thermometer can only measures temperature or hotness of a substance. It cannot be used to measure the thermal rate or amount of heat energy of a reaction.
Answer:
No, it is not conserved
Explanation:
Let's calculate the total kinetic energy before the collision and compare it with the total kinetic energy after the collision.
The total kinetic energy before the collision is:

where m1 = m2 = 1 kg are the masses of the two carts, v1=2 m/s is the speed of the first cart, and where v2=0 is the speed of the second cart, which is zero because it is stationary.
After the collision, the two carts stick together with same speed v=1 m/s; their total kinetic energy is

So, we see that the kinetic energy was not conserved, because the initial kinetic energy was 2 J while the final kinetic energy is 1 J. This means that this is an inelastic collision, in which only the total momentum is conserved. This loss of kinetic energy does not violate the law of conservation of energy: in fact, the energy lost has simply been converted into another form of energy, such as heat, during the collision.
Answer:
The surface tension is 0.0318 N/m and is sufficiently less than the surface tension of the water.
Solution:
As per the question:
Radius of an alveolus, R = 
Gauge Pressure inside, 
Blood Pressure outside, 
Now,
Change in pressure, 
Since the alveolus is considered to be a spherical shell
The surface tension can be calculated as:


And we know that the surface tension of water is 72.8 mN/m
Thus the surface tension of the alveolus is much lesser as compared to the surface tension of water.