Answer:
6.96 s
Explanation:
<u>Given:</u>
- u = initial speed of the automobile = 0 m/s
- a = constant acceleration of the automobile =

- v = constant speed of the truck = 8.7 m/s
<u>Assume:</u>
- t = time instant at which the automobile overtakes the truck.
At the moment the automobile and the truck both meat each other the distance travel by both vehicles must be the same.

Since t = 0 s is the initial condition. So, they both meet again at t = 6.96 s such that the automobile overtakes the truck.
Answer:
The asteroid belt is a region of our solar system, between the orbits of Mars and Jupiter, in which many small bodies orbit our sun.
Explanation:
Hope this helps!
Answer:

Explanation:
given,
s = 400- 16 t²
we know,
Velocity of an object is defined as the change in displacement per unit change in time.
velocity an also be return as




Hence, instantaneous velocity function given by 
To calculate instantaneous velocity, you need to insert value of time.
ex, instantaneous velocity at t = 4 s
v = -32 x 4 = -128 m/s.
This can be solved using momentum balance, since momentum is conserved, the momentum at point 1 is equal to the momentum of point 2. momentum = mass x velocity
m1v1 = m2v2
(0.03kg x 900 m/s ) = 320(v2)
v2 = 27 / 320
v2 = 0.084 m/s is the speed of the astronaut