A region within a magnetic material in which magnetization is in a uniform direction this means the individual magnetic moments of the atoms are aligned with one another and they point the same direction. when cooled bwlow a temperature called the curie temperature the magnetization of a piece of ferromagnetic material.<span />
To develop this problem it is necessary to apply the Rayleigh Criterion (Angular resolution)criterion. This conceptos describes the ability of any image-forming device such as an optical or radio telescope, a microscope, a camera, or an eye, to distinguish small details of an object, thereby making it a major determinant of image resolution. By definition is defined as:

Where,
= Wavelength
d = Width of the slit
= Angular resolution
Through the arc length we can find the radius, which would be given according to the length and angle previously described.
The radius of the beam on the moon is

Relacing 


Replacing with our values we have that,


Therefore the diameter of the beam on the moon is



Hence, the diameter of the beam when it reaches the moon is 7361.82m
Answer:
8 m/s²
Explanation:
Given,
Force ( F ) = 4 N
Mass ( m ) = 0.5 kg
To find : -
Acceleration ( a ) = ?
Formula : -
F = ma
a = F / m
= 4 / 0.5
= 40 / 5
a = 8 m/s²
It's acceleration is 8 m/s².
Answer:
A)
B)
Explanation:
Given that
Force = F
Increase in Kinetic energy = 

we know that
Work done by all the forces =change in the kinetic energy
a)
Lets distance = d
We know work done by force F
W= F .d
F.d=ΔKE


b)
If the force become twice
F' = 2 F
F'.d=ΔKE'
2 F .d = ΔKE' ( F.d =Δ KE)
2ΔKE = ΔKE'

Therefore the final kinetic energy will become the twice if the force become twice.
Answer
Pressure, P = 1 atm
air density, ρ = 1.3 kg/m³
a) height of the atmosphere when the density is constant
Pressure at sea level = 1 atm = 101300 Pa
we know
P = ρ g h


h = 7951.33 m
height of the atmosphere will be equal to 7951.33 m
b) when air density decreased linearly to zero.
at x = 0 air density = 0
at x= h ρ_l = ρ_sl
assuming density is zero at x - distance

now, Pressure at depth x


integrating both side


now,


h = 15902.67 m
height of the atmosphere is equal to 15902.67 m.