Answer:
Burning of canful of petrol will release more energy
Explanation:
If you like my answer than please mark me brainliest
Answer:
Explanation:
Given
charge of first body 
charge of second body 
Particle 1 is at origin and particle 2 is at 
third Particle which charge +q must be placed left of
because it will repel the q charge while
will attract it
suppose it is placed at a distance of x m








Downwards - from uphill towards the lowlands and eventually into the sea.
IMA = Ideal Mechanical Advantage
First class lever = > F1 * x2 = F2 * x1
Where F1 is the force applied to beat F2. The distance from F1 and the pivot is x1 and the distance from F2 and the pivot is x2
=> F1/F2 = x1 /x2
IMA = F1/F2 = x1/x2
Now you can see the effects of changing F1, F2, x1 and x2.
If you decrease the lengt X1 between the applied effort (F1) and the pivot, IMA decreases.
If you increase the length X1 between the applied effort (F1) and the pivot, IMA increases.
If you decrease the applied effort (F1) and increase the distance between it and the pivot (X1) the new IMA may incrase or decrase depending on the ratio of the changes.
If you decrease the applied effort (F1) and decrease the distance between it and the pivot (X1) IMA will decrease.
Answer: Increase the length between the applied effort and the pivot.
Answer:
40 J
Explanation:
From the question given above, the following data were obtained:
Force (F) = 10 N
Distance (s) = 4 m
Workdone (Wd) =?
Work done is simply defined as the product of force and distance moved in the direction of the force. Mathematically, we can express the Workdone as:
Workdone = force × distance
Wd = F × s
With the above formula, we can obtain the workdone as follow:
Force (F) = 10 N
Distance (s) = 4 m
Workdone (Wd) =?
Wd = F × s
Wd = 10 × 4
Wd = 40 J
Thus, 40 J of work was done.