The force constant of the spring is determined as 14,222.2 N/m.
<h3>Force constant of the spring</h3>
Apply the principle of conservation of energy,
K.E = U
where;
- K.E kinetic energy of the elevator
- U is elastic potential energy of the spring
¹/₂mv² = ¹/₂kx²
mv² = kx²
k = mv²/x²
Where;
- m is mass of the elevator
- v is speed
- x is compression of the spring
k = (2000 x 8²)/(3²)
k = 14,222.2 N/m
Thus, the force constant of the spring is determined as 14,222.2 N/m.
Learn more about force constant here: brainly.com/question/1968517
#SPJ1
Answer
Can the wave travel between the Sun and Earth.
Explanation:
This would be due to the fact that mechanical waves alone require a medium to travel. Electromagnetic waves that are produced on the sun subsequently travel to Earth through the vacuum of outer space. ... Mechanical waves require a medium in order to transport their energy from one location to another.
Answer: Socratic
Explanation: i’m not sure but you can use Socratic it’s a good app that helps
Answer:
11 moments docx has the answer
Explanation:
There are two units of sound: intensity and in decibels. Decibels are not additive, you must convert it first to units of intensity (W/m²) using this formula:
dB = 10 log(I/10⁻¹²)
A. 100 dB = 10 log(I/10⁻¹²)
Solving for I,
I = 0.01 W/m²
90 dB = 10 log(I/10⁻¹²)
Solving for I,
I = 0.001
Ratio = 0.01/0.001 = 10
<em>Thus,the choir is 10 times more intense than the soloist.</em>
B. Since there are 90 singers, there would be 9 groups of 10-person choir that produces 100 dB or 0.01 W/m². The total intensity would be
Total intensity = 0.01 W/m² (original choir) + 0.001 W/m² (soloist) + 10(0.01 W/m²) (additional 90 singers) = 0.111 W/m²
dB = 10 log(0.111/10⁻¹²) = <em>110.45 dB</em>
C. Rock concert:
120 dB = 10 log(I/10⁻¹²)
Solving for I,
I = 1 W/m²
Ratio = 1/0.111 = 9
<em>Therefore, the rock concert is 9 times more intense than the choir concert.</em>