Answer:
Velocity of airplane is 500 km/h
Velocity of wind is 40 km/h
Explanation:
= Velocity of airplane in still air
= Velocity of wind
Time taken by plane to travel 1150 km against the wind is 2.5 hours

Time taken by plane to travel 450 km against the wind is 50 minutes = 50/60 hours

Subtracting the two equations we get

Applying the value of velocity of wind to the first equation

∴ Velocity of airplane in still air is 500 km/h and Velocity of wind is 40 km/h
The work done on the puck is 96 J
Explanation:
According to the work-energy theorem, the work done on the hockey puck is equal to the change in kinetic energy of the puck.
Mathematically:
where
is the final kinetic energy of the puck, with
m = 2 kg being the mass of the puck
v = 10 m/s is the final speed
is the initial kinetic energy of the puck, with
u = 2 m/s being the initial speed of the puck
Substituting numbers into the equation, we find the work done by the player on the puck:
Learn more about work and kinetic energy:
brainly.com/question/6763771
brainly.com/question/6443626
brainly.com/question/6536722
#LearnwithBrainly
<span>Wedges is your answer please mark brainliest </span>
Green: nm 495–570. Yellow: nm 570–590. 590–620 nm for orange. Red: 620-750 nm (400–484 THz frequency)
Solids' molecules are strongly attracted to one another. As a result, the molecules are barely moving and tightly packed. Because of this, shape and volume are fixed.
The forces of attraction and repulsion in liquids are comparable. Compared to the solid state, they move a little bit more. They then assume the shape of the container while still having a fixed capacity.
The attraction forces between the molecules in gases are quite weak. They move quite freely and grow in an effort to fill as much space as they can. Consequently, their volume and shape vary (adopt the shape of the container).
You can learn more about states of the matter here:
brainly.com/question/18538345
#SPJ4