Answer:
37.5 g NaCl
Explanation:
Step 1: Given data
- Concentration of NaCl: 15.0% m/m
- Mass of the solution: 250.0 g
Step 2: Calculate how many grams of NaCl are in 250.0 g of solution
The concentration of NaCl is 15.0% by mass, that is, there are 15.0 g of NaCl every 100 g of solution.
250.0 g Solution × 15.0 g NaCl/100 g Solution = 37.5 g NaCl
Answer: Pt(Cl)2(NH3)2
Explanation:
In the formation of the complex, the oxidation number of platinum is plus two (+2) and two chloride ions cancel it out by their oxidation number of -1 each. Hence the complex has an overall charge of zero. It is thus neutral with no charge attached to its formula.
Answer:
11.8.4 Distillation Columns
Distillation columns present a hazard in that they contain large inventories of flammable boiling liquid, usually under pressure. There are a number of situations which may lead to loss of containment of this liquid.
The conditions of operation of the equipment associated with the distillation column, particularly the reboiler and bottoms pump, are severe, so that failure is more probable.
The reduction of hazard in distillation columns by the limitation of inventory has been discussed above. A distillation column has a large input of heat at the reboiler and a large output at the condenser. If cooling at the condenser is lost, the column may suffer overpressure. It is necessary to protect against this by higher pressure design, relief valves, or HIPS. On the other hand, loss of steam at the reboiler can cause underpressure in the column. On columns operating at or near atmospheric pressure, full vacuum design, vacuum breakers, or inert gas injection is needed for protection. Deposition of flammable materials on packing surfaces has led to many fires on opening of distillation column for maintenance.
Another hazard is overpressure due to heat radiation from fire. Again pressure relief devices are required to provide protection.
The protection of distillation columns is one of the topics treated in detail in codes for pressure relief such as APIRP 521. Likewise, it is one of the principal applications of trip systems.
Another quite different hazard in a distillation column is the ingress of water. The rapid expansion of the water as it flashes to steam can create very damaging overpressures.
Answer:
The answer to your question is 3 moles of AlCl₃
Explanation:
Process
1.- Write and balance the equation
Al(NO₃)₃ + 3NaCl ⇒ 3NaNO₃ + AlCl₃
2.- Determine the limiting reactant
Theoretical proportion 1 mol Al(NO₃)₃ : 3 moles of NaCl
Experimental proportion 4 moles Al(NO₃)₃ : 9 moles NaCl
From these values, we determine that the limiting reactant is NaCl because the number of moles increases three times and the number of moles of Al(NO₃)₃ increases four times.
3.- Determine the amount of AlCl₃ using proportions
3 moles of NaCl --------------- 1 mol of AlCl₃
9 moles of NaCl ---------------- x
x = (9 x 1) / 3
x = 9 /3
x = 3 moles