I’m not gay, but i hope you have a good day too!!
Answer:
Mutations can be caused by high-energy sources such as radiation or by chemicals in the environment. They can also appear spontaneously during the replication of DNA. Mutations generally fall into two types: point mutations and chromosomal aberrations. In point mutations, one base pair is changed. A single mutation can have a large effect, but in many cases, evolutionary change is based on the accumulation of many mutations with small effects. Mutational effects can be beneficial, harmful, or neutral, depending on their context or location. Most non-neutral mutations are deleterious.
Have an awesome day friend! <3
The balanced chemical reaction would be as follows:
<span>5P4O6 +8I2 ---> 4P2I4 +3P4O10
We are given the amount of reactants used for the reaction. We first need to determine the limiting reactant from the given amounts. We do as follows:
8.80 g P4O6 (1 mol / </span><span>219.88 g) = 0.04 mol P4O6
12.37 g I2 ( 1 mol / </span><span>253.809 g ) = 0.05 mol I2
Therefore, the limiting reactant is iodine since less it is being consumed completely in the reaction. We calculate the amount of P2I4 prepared as follows:
0.05 mol I2 ( 4 mol P2I4 / 8 mol I2 ) (</span><span>569.57 g / 1 mol) = 14.24 g P2I4</span>
I am so sorry I do not know but I need to answer a question in order to ask one I hope u pass:))
Answer: 1+
Justification:
The ionization energies tell the amount of energy needed to release an electron and form a ion. The first ionization energy if to loose one electron and form the ion with oxidation state 1+, the second ionization energy is the energy to loose a second electron and form the ion with oxidation state 2+, the third ionization energy is the energy to loose a third electron and form the ion with oxidation state 3+.
The low first ionization energy of element 2 shows it will lose an electron relatively easily to form the ion with oxidations state 1+.
The relatively high second ionization energy (and third too) shows that it is very difficult for this atom to loose a second electron, so it will not form an ions with oxidation state 2+. Furthermore, given the relatively high second and third ionization energies, you should think that the oxidation states 2+ and 3+ for element 2 never occurs.
Therefore, the expected oxidation state for the most common ion of element 2 is 1+.