Answer:
v = √ 2 G M/
Explanation:
To find the escape velocity we can use the concept of mechanical energy, where the initial point is the surface of the earth and the end point is at the maximum distance from the projectile to the Earth.
Initial
Em₀ = K + U₀
Final
= 
The kinetic energy is k = ½ m v²
The gravitational potential energy is U = - G m M / r
r is the distance measured from the center of the Earth
How energy is conserved
Em₀ = 
½ mv² - GmM /
= -GmM / r
v² = 2 G M (1 /
– 1 / r)
v = √ 2GM (1 /
– 1 / r)
The escape velocity is that necessary to take the rocket to an infinite distance (r = ∞), whereby 1 /∞ = 0
v = √ 2GM /
Answer:
2250N
Explanation:
W= mg,
where W= weight
m= mass
g= acceleration due to gravity
Given that the body is 90kg, m= 90kg.
Acceleration due to gravity of planet
= 2.5(10)
= 25 m/s²
Weight of body on planet
= 90(25)
= 2250N
*Mass is the amount of matter an object has and is constant (same on earth and the planet).
1) 211m/s
2)240<span>°
3)759,600m or 759.6 km</span>
The process by which two or more tiny nuclei unite to generate a bigger nucleus is known as a nuclear fusion reaction. Heavier atoms are products of a fusion reaction.
<h3 /><h3>What is nuclear fusion?</h3>
The process by which two or more tiny nuclei unite to generate a bigger nucleus is known as a nuclear fusion reaction.
For example, the fusion of two hydrogen atoms produces more energy than the fusion of one helium atom, and surplus energy is expelled into space upon binding.
Hence heavier atoms are e products of a fusion reaction.
To learn more about nuclear fusion refer to the link;
brainly.com/question/14019172