In this item, I supposed, that we are determine the molar fraction of oxygen and carbon dioxide in the sample. This can be done by dividing their respective partial pressures by the total pressure of the sample.
O2 : mole fraction = (100.7 mmHg) / (763.00 mmHg) = 0.13
CO2 : mole fraction = (33.57 mmHg) / (763.00 mmHg) = 0.044
Answers: O2 = 0.13
CO2 = 0.044
Answer:- There are 32 valence electrons and it's tetrahedral in shape.
Explanations:- Atomic number of carbon is 6 and it's electron configuration is
. It has 4 electrons in the outer most shell means it has 4 valence electrons.
Atomic number of Br is 35 and it's electron configuration is
. It has 7 electrons in the outer most shell(2 in 4s and 5 in 4p) .
There is one C and four Br in the given compound. So, total number of valence electrons = 4+4(7) = 4+28 = 32
Four Br atoms are bonded to the central carbon atom and also there isn't any lone pair present on carbon. It makes it tetrahedral.
Answer:
Option-1 (O²⁻) is the correct answer.
Explanation:
All given anions contains same charge. So, we can ignore the effect of charge on these anions.
As we know all given compounds belongs to same group (Group 6) in periodic table. And from top to bottom along the group the elements are placed as,
Oxygen O
Sulfur S
Selenium Se
Tellurium Te
Hence, moving from top to bottom along the group the number of shells increases. And with increase in number of shell the atomic or ionic radii increases. As Oxygen is present at the top of the group, therefore, it has the smallest radius due to less number of shells.