Here are fractions equivalent to 1/4.......2/8, 3/12, 4/16, 5/20, ...
Complete Question
The complete question is shown on the first uploaded image
Answer:
The solution is 
Step-by-step explanation:
From the question we are told that

and 
Generally the absolute value of the determinant of the Jacobian for this change of coordinates is mathematically evaluated as
![| \frac{\delta (x,y)}{\delta (u, v)} | = | \ det \left[\begin{array}{ccc}{\frac{\delta x}{\delta u} }&{\frac{\delta x}{\delta v} }\\\frac{\delta y}{\delta u}&\frac{\delta y}{\delta v}\end{array}\right] |](https://tex.z-dn.net/?f=%7C%20%5Cfrac%7B%5Cdelta%20%20%28x%2Cy%29%7D%7B%5Cdelta%20%28u%2C%20v%29%7D%20%7C%20%3D%20%20%7C%20%5C%20det%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D%7B%5Cfrac%7B%5Cdelta%20x%7D%7B%5Cdelta%20u%7D%20%7D%26%7B%5Cfrac%7B%5Cdelta%20x%7D%7B%5Cdelta%20v%7D%20%7D%5C%5C%5Cfrac%7B%5Cdelta%20y%7D%7B%5Cdelta%20u%7D%26%5Cfrac%7B%5Cdelta%20y%7D%7B%5Cdelta%20v%7D%5Cend%7Barray%7D%5Cright%5D%20%7C)
![= |\ det\ \left[\begin{array}{ccc}{-2e^{-2u} cos(5v)}&{-5e^{-2u} sin(5v)}\\{-2e^{-2u} sin(5v)}&{-2e^{-2u} cos(5v)}\end{array}\right] |](https://tex.z-dn.net/?f=%3D%20%7C%5C%20det%5C%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D%7B-2e%5E%7B-2u%7D%20cos%285v%29%7D%26%7B-5e%5E%7B-2u%7D%20sin%285v%29%7D%5C%5C%7B-2e%5E%7B-2u%7D%20sin%285v%29%7D%26%7B-2e%5E%7B-2u%7D%20cos%285v%29%7D%5Cend%7Barray%7D%5Cright%5D%20%20%7C)

So
![\frac{\delta (x,y)}{\delta (u, v)} | = |det \left[\begin{array}{ccc}a&b\\c&d\\\end{array}\right] |](https://tex.z-dn.net/?f=%5Cfrac%7B%5Cdelta%20%20%28x%2Cy%29%7D%7B%5Cdelta%20%28u%2C%20v%29%7D%20%7C%20%3D%20%7Cdet%20%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7Da%26b%5C%5Cc%26d%5C%5C%5Cend%7Barray%7D%5Cright%5D%20%7C)
=> 
substituting for a, b, c,d
=> 
=> 
=> 
The answer is D
If this helped a brainliest would be appreciated!
This is false. Kites can be shaped in many different ways so not all kites are rhombuses. Also, even the kites that look like rhombuses may not be rhombuses. Most kites have 2 pairs of sides with the same length. But, in order to be a rhombus all the sides have to be the same length but not all sides are the same length on a typical kite.