1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Igoryamba
3 years ago
5

Recall that the Fibonacci Sequence is defined by the recurrence relation, a0 = a1 = 1 and for n ≥ 2, an = an−1 + an−2 . a. Show

that f(x) = 1 1−x−x 2 is the generating function of the Fibonacci Sequence. b. Find ???? and β such that 1 − x − x 2 = (1 − ????x)(1 − βx). c. Find A and B in terms of ???? and β, such that 1 1−x−x 2 = A 1−????x + B 1−βx. d. Use the results of the previous parts to obtain a formula for an.
Mathematics
1 answer:
e-lub [12.9K]3 years ago
8 0

Answer:

Step-by-step explanation:

From the given information:

a_n = a_{n-1} + a_{n-2}; \ \ \ n \ge 2 \\ \\  a_o = 1 \\ \\  a_1 =1   \ \ \ \ \  since \ \  a_o = a_1 = 1

A)

a_n - a_{n-1} - a_{n-2} = 0  \\ \\  \implies \sum \limits ^{\infty}_{n=2}(a_n -a_{n-1}-a_{n-2} ) x^n = 0 \\ \\ \implies \sum \limits ^{\infty}_{n=2} a_nx^n - \sum \limits ^{\infty}_{n=2} a_{n-1}x^n - \sum \limits ^{\infty}_{n=2}a_{n-2} x^n = 0 \\ \\  \implies (a(x) -a_o-a_1x) - (x(a(x) -a_o)) -x^2a(x) = 0 \\ \\ \implies a(x) (1 -x-x^2) -a_o-a_1x+a_ox = 0 \\ \\ \implies a(x)(1-x-x^2)-1-x+x=0 \\ \\ \implies a(x) (1-x-x^2) = 1

\mathbf{Generating \  Function: a(x) = \dfrac{1}{1-x-x^2}=f(x)}

B)

If \ \  1 -x-x^2 = (1 - \alpha x) ( 1- \beta x) \\ \\  \implies 1 -x - ^2 = 1 + \alpha \beta x^2 - ( \alpha + \beta )x  \\ \\ \text{It implies that:} \\ \\ \alpha \beta = -1  \\ \\  \alpha + \beta = 1 \\ \\  \implies \alpha = ( 1-\beta)  \\ \\  ( 1- \beta) \beta = -1 \\ \\ \implies \beta - \beta^2 = -1   \implies  \beta - \beta^2 -1 = 0\\ \\   \beta = \dfrac{-(-1) \pm \sqrt{(-1)^2 -4(1)(-1)}}{2(1)}

\beta = \dfrac{1\pm \sqrt{5}}{2} \\ \\ \beta = \dfrac{1 + \sqrt{5}}{2} \ \  and  \ \ \alpha  = \dfrac{1 - \sqrt{5}}{2}

C)

\dfrac{1}{1-x-x^2}= \dfrac{A}{1-\alpha x}+ \dfrac{\beta}{1-\beta x}  \\ \\  = \dfrac{A(1-\beta x) + B(1-\alpha x)}{(1-\alpha x) (1 - \beta x)} \\ \\ = \dfrac{(A+B)-(A\beta+B\alpha)x}{(1-\alpha x) (1-\beta x)}

\text{It means:} \\ \\  A+B=1  \\ \\  B = (1-A) \\ \\ A\beta+ B \alpha =0 \\ \\  A\beta  ( 1 -A) \alpha = 0  \\ \\  A( \beta - \alpha ) = -\alpha \\ \\  A = \dfrac{\alpha}{\alpha - \beta } \\ \\   \\ \\ B = 1 - \dfrac{\alpha }{\alpha - \beta} \implies \dfrac{\alpha - \beta - \alpha }{\alpha - \beta } \\ \\ =\dfrac{-\beta }{\alpha - \beta} \\ \\  \mathbf{B = \dfrac{\beta }{\beta - \alpha }}

D)

\text{The formula for} a_n: \\ \\  a(x) = \dfrac{\alpha }{\alpha - \beta }\sum \limits ^{\infty}_{n=0} \alpha ^n x^n - \dfrac{\beta}{\beta - \alpha }\sum \limits ^{\infty}_{n=0} \beta x^n \\ \\  \implies \sum \limits ^{\infty}_{n =0} \dfrac{\alpha ^{n+1}- \beta ^{n+1}}{\alpha - \beta}x^n \\ \\  a_n = \dfrac{\alpha ^{n+1}- \beta ^{n+1}}{\alpha - \beta } \\ \\  \\  a_n = \dfrac{1}{\sqrt{5}} \Big (\Big( \dfrac{\sqrt{5}+1}{2}\Big)^{n+1}- \Big ( \dfrac{1-\sqrt{5}}{2}\Big) ^{n+1}\Big)

You might be interested in
What is the value of the expression 1/2 (m-2/3n) when m=3/2 and n= 1/2 ?
yawa3891 [41]

Answer:

B.\frac{7}{12}

Step-by-step explanation:

m=\frac{3}{2}\\n=\frac{1}{2\\} \\\frac{1}{2} (m-\frac{2}{3} n)=\frac{1}{2} (\frac{3}{2} -\frac{2}{3} .\frac{1}{2} )\\=\frac{7}{12}

So B is the correct answer.

4 0
3 years ago
Find the perimeter FOR BRAINLIEST
andreyandreev [35.5K]

Answer:

56

Step-by-step explanation:

6 0
3 years ago
Read 2 more answers
Y= -0.25x + 4.7<br> Y=4.9x - 1.64
Andreas93 [3]

Answer:

The answer would be (1.23, 4.39)

Step-by-step explanation:

Because they are both equal to y, we can set the equations equal to each other and then solve.

4.9x - 1.64 = -0.25x + 4.7

5.15x - 1.64 = 4.7

5.15x = 6.34

x = 1.23

Now that we have the value for x, we can plug into either equation and find y.

y = -0.25x + 4.7

y = -0.25(1.23) + 4.7

y = -.31 + 4.7

y = 4.39

3 0
4 years ago
Find the product of 51 and -2.5.
Bad White [126]
Answer: C. -102 + (-25.5)
4 0
3 years ago
enton is shopping for clothes during a special event. He pays $24.99 for a pair of jeans and $5.25 for a clearance-priced shirt.
Marianna [84]

Answer$18.12

Step-by-step explanation:

24.99+5.25-12.12=$18.12

7 0
3 years ago
Other questions:
  • What's the simplified radical of √26?
    6·2 answers
  • Elias and Niko are polishing the silver at the heritage museum. Elias could polish all the silver himselfin 40 minutes. That tas
    12·1 answer
  • Solve please.............. . .
    8·1 answer
  • A fence on a hill uses vertical posts L and M to hold parallel rails N and P. If m∠1 = 6x and m∠12 = 4x, then what is the measur
    11·2 answers
  • A botanist wishes to estimate the typical number of seeds for a certain fruit. She samples 54 specimens and counts the number of
    10·1 answer
  • PLS Help! What is the best approximation for the perimeter of a semicircle with a diameter of 12cm? Use 3.14 to approximation pi
    14·2 answers
  • 100 Point! Need help please, thanks a lot!
    12·1 answer
  • I need help asap (show the work)
    7·1 answer
  • Help again pleaseee and tank ouu
    12·1 answer
  • Joannie lent $200 to her sister. Four years later, her sister repaid her in full with $228. What simple annual interest rate did
    8·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!