Answer:

Explanation:
The change in kinetic energy will be simply the difference between the final and initial kinetic energies: 
We know that the formula for the kinetic energy for an object is:

where <em>m </em>is the mass of the object and <em>v</em> its velocity.
For our case then we have:

Which for our values is:

The x- and y-coordinates are 9142.57 m and -304.425 m
<u>Explanation:</u>
As the motion of the shell is in a plane (two dimensional space) and the acceleration is that due to gravity which is vertically downward, we resolve initial velocity of the shell
in horizontal and vertical directions. If the initial velocity of the shell is making angle with the horizontal, the horizontal component of initial velocity will be

As the acceleration of the shell is vertical having no horizontal component, the shell may be considered to move horizontally with constant velocity of
and hence the horizontal distance covered (or the x coordinate of the shell with point of projection as origin) is given by


For motion with constant acceleration, we know

Along the horizontal, x-axis, we might write this as

Measuring distances relative to the firing point means

we know that,

or,

By applying the values, we get,

The acceleration of gravity is vertically downward and is
, hence the vertical distance covered (or y coordinate of the shell) is given by the second equation of motion

we know,
and
, so,

y = 11701.8 - 4.9(2450.25)= 11701.8 - 12006.225 = - 304.425 m
The first blank: HEAT
The second blank: ELECTRICAL
One reason that it would be appropriate to talk on your cell phone, could be reporting an accident. For instance, a car crash, a sign in the road anything regarding safety of drivers.
Answer:
5.09 x 10⁵ Nm²/C
Explanation:
The electric flux φ through a planar area is defined as the electric field Ε times the component of the area Α perpendicular to the field. i.e
φ = E A
From the question;
E = (8.0j + 2.0k) ✕ 10³ N/C
r = radius of the circular area = 9.0m
A = area of a circle = π r² [Take π = 3.142]
A = 3.142 x 9² = 254.502m²
Now, since the area lies in the x-y plane, only the z-component of the electric field is responsible for the electric flux through the circular area.
Therefore;
φ = (2.0) x 10³ x 254.502
φ = 5.09 x 10⁵ Nm²/C
The electric flux is 5.09 x 10⁵ Nm²/C