Answer:
v₂=- 34 .85 m/s
v₁=0.14 m/s
Explanation:
Given that
m₁=70 kg ,u₁=0 m/s
m₂=0.15 kg ,u₂=35 m/s
Given that collision is elastic .We know that for elastic collision
Lets take their final speed is v₁ and v₂
From momentum conservation
m₁u₁+m₂u₂=m₁v₁+m₂v₂
70 x 0+ 0.15 x 35 = 70 x v₁ + 0.15 x v₂
70 x v₁ + 0.15 x v₂=5.25 --------1
v₂-v₁=u₁-u₂ ( e= 1)
v₂-v₁ = -35 --------2
By solving above equations
v₂=- 34 .85 m/s
v₁=0.14 m/s
If the maximum emf of the ac generator is 20 V and the maximum potential difference across the resistor is 16 V Then the maximum potential difference across the inductor is 4 V.
Calculation:
Step-1:
It is given that the RL circuit is connected to a 20 V ac generator. The maximum potential difference across the resistor is 16 V. It is required to find the maximum potential drop across the inductor.
Step-2:
The maximum emf of the generator is equal to the sum of the maximum potential difference across the resistor and the maximum potential difference across the inductor.
Therefore,
The maximum potential difference across the inductor + Maximum maximum potential difference across the resistor = Maximum emf of the generator
Thus,
Maximum maximum potential difference across the inductor + 16 V = 20 V
Therefore,
Maximum maximum potential difference across the inductor = 20 V - 16 V = 4 V
Learn more about potential differences across resistor and inductor here,
brainly.com/question/15715072
#SPJ4
Answer:
The answer ro this question is fear of failure
Based on this electric field diagram, the statement which best compares the charge of A with B is "A is negatively charged and B is positively charged. The charge on A is greater than that on B".
<u>Answer:</u> Option A
<u>Explanation:</u>
The charge is quantized represented as elementary charge, about 1.602×10−19 coulombs. Their are two kinds of electric charging: positive and negative (usually transported, separately, by protons and electrons). Like charges repel each other, while attraction occurs among unlike charges. An entity without net charge is considered neutral. If a piece of matter comprises more electrons than protons, it has a negative charge, when there are fewer, it'll have a positive charge and when there are equal amounts, this will be neutral.