I believe that there are 12 oxygen atoms in aluminum sulfate, And 1 Sulfur and 2 aluminum. If you need anything else let me know.
Answer:
you didn't ask a question so here is your explanation.
Explanation:
Q = mc∆T. Q = heat energy (Joules, J) m = mass of a substance (kg) c = specific heat (units J/kg∙K) ∆ is a symbol meaning "the change in"
Answer:
ΔH = -20kJ
Explanation:
The enthalpy of formation of a compound is defined as the change of enthalpy during the formation of 1 mole of the substance from its constituent elements. For H₂S(g) the reaction that describes this process is:
H₂(g) + S(g) → H₂S(g)
Using Hess's law, it is possible to sum the enthalpies of several reactions to obtain the change in enthalpy of a particular reaction thus:
<em>(1) </em>H₂S(g) + ³/₂O₂(g) → SO₂(g) + H₂O(g) ΔH = -519 kJ
<em>(2) </em>H₂(g) + ¹/₂O₂(g) → H₂O(g) ΔH = -242 kJ
<em>(3) </em>S(g) + O₂(g) → SO₂(g) ΔH = -297 kJ
The sum of -(1) + (2) + (3) gives:
<em>-(1) </em>SO₂(g) + H₂O(g) → H₂S(g) + ³/₂O₂(g) ΔH = +519 kJ
<em>(2) </em>H₂(g) + ¹/₂O₂(g) → H₂O(g) ΔH = -242 kJ
<em>(3) </em>S(g) + O₂(g) → SO₂(g) ΔH = -297 kJ
<em>-(1) + (2) + (3): </em><em>H₂(g) + S(g) → H₂S(g) </em>
<em>ΔH =</em> +519kJ - 242kJ - 297kJ = <em>-20 kJ</em>
<em />
I hope it helps!
They will most likely make a table, or some sort of graphing chart
Answer:
(A) The shorter the wavelength, the more total energy the wave contains.
(B) The longer the wavelength, the less total energy the wave contains.
Explanation:
The wavelength (λ), frequency (f) and energy (E) are interrelated. This relationship between them is represented in the following equations:
λ = v/f and E = hf
Where;
λ = wavelength (m)
f = frequency (Hz)
E = energy (Joules)
v and h represents speed of light and Planck's constants respectively.
Combining both equations, E = hc/λ
This equation shows that ENERGY (E) is directly proportional to the frequency (f) but inversely proportional to the wavelength (λ). This means that "the shorter the wavelength, the more total energy a wave contains" and vice versa.
However, the higher the frequency, the more the total energy the wave contains and vice versa.