Answer:
The answer is below!!
Explanation:
Ferns are plants that do not bear flowers. They do not have any seeds as well. In this regard, their mode of reproduction is through spores. Gymnosperms on the other hand have seeds, although they are not put inside an ovary.
Hope I Helped!!
:)
In the reaction of silver nitrate with copper metal, metallic silver comes out of solution, and the solution turns blue. This as a <u>single replacement</u> reaction.
<h3>What is
single replacement reaction?</h3>
A single replacement reaction, also known as a single displacement reaction, occurs when one element in a molecule is swapped out for another. The starting materials are always pure elements, such as a pure zinc metal or hydrogen gas, plus an aqueous compound.
A + BC → B + AC
When A is more reactive than B or when the product AC is more stable than BC, single replacement reactions happen. A and B could either be two halogens or two metals (with hydrogen included) (C is a cation). C functions as a spectator ion when BC and AC are in aqueous solutions.
For example, 2HCl(aq)+Zn(s)→ZnCl₂(aq)+H₂(g)
Learn more about single replacement reactions here:
brainly.com/question/19068047
#SPJ4
Acceleration is when something is being moved forward or back, motion is just movement, friction is two or more things rubbing together, so the answer should be B. gravity
Answer:
The equilibrium position shifts to the right, in accordance to the constraint principle
<u>Answer:</u> C) be hypertonic to Tank B.
<u>Explanation: </u>
<u>
The ability of an extracellular solution to move water in or out of a cell by osmosis</u> is known as its tonicity. Additionally, the tonicity of a solution is related to its osmolarity, which is the <u>total concentration of all the solutes in the solution.
</u>
Three terms (hypothonic, isotonic and hypertonic) are used <u>to compare the osmolarity of a solution with respect to the osmolarity of the liquid that is found after the membrane</u>. When we use these terms, we only take into account solutes that can not cross the membrane, which in this case are minerals.
- If the liquid in tank A has a lower osmolarity (<u>lower concentration of solute</u>) than the liquid in tank B, the liquid in tank A would be hypotonic with respect to the latter.
- If the liquid in tank A has a greater osmolarity (<u>higher concentration of solute</u>) than the liquid in tank B, the liquid in tank A would be hypertonic with respect to the latter.
- If the liquid in tank A has the same osmolarity (<u>equal concentration of solute</u>) as the liquid in tank B, the liquid in tank A would be isotonic with respect to the latter.
In the case of the problem, option A is impossible because the minerals can not cross the membrane, since it is permeable to water only. There is no way that the concentration of minerals decreases in tank A, so <u>the solution in this tank can not be hypotonic with respect to the one in Tank B. </u>
Equally, both solutions can not be isotonic and neither we can say that the solution in tank A has more minerals that the one in tank B because the liquid present in tank B is purified water that should not have minerals. Therefore, <u>options B and D are also not correct.</u>
Finally, the correct option is C, since in the purification procedure the water is extracted from the solution in tank A to obtain a greater quantity of purified water in tank B. In this way, the solution in Tank A would be hypertonic to Tank B.