Answer: 1.289 m
Explanation:
The path the cobra's venom follows since it is spitted until it hits the ground, is described by a parabola. Hence, the equations for parabolic motion (which has two components) can be applied to solve this problem:
<u>x-component:
</u>
(1)
Where:
is the horizontal distance traveled by the venom
is the venom's initial speed
is the angle
is the time since the venom is spitted until it hits the ground
<u>y-component:
</u>
(2)
Where:
is the initial height of the venom
is the final height of the venom (when it finally hits the ground)
is the acceleration due gravity
Let's begin with (2) to find the time it takes the complete path:
(3)
Rewritting (3):
(4)
This is a quadratic equation (also called equation of the second degree) of the form
, which can be solved with the following formula:
(5)
Where:
Substituting the known values:
(6)
Solving (6) we find the positive result is:
(7)
Substituting (7) in (1):
(8)
We finally find the horizontal distance traveled by the venom:
Answer:
The answer to the question is as follows
The acceleration due to gravity for low for orbit is 9.231 m/s²
Explanation:
The gravitational force is given as

Where
= Gravitational force
G = Gravitational constant = 6.67×10⁻¹¹
m₁ = mEarth = mass of Earth = 6×10²⁴ kg
m₂ = The other mass which is acted upon by
and = 1 kg
rEarth = The distance between the two masses = 6.40 x 10⁶ m
therefore at a height of 400 km above the erth we have
r = 400 + rEarth = 400 + 6.40 x 10⁶ m = 6.80 x 10⁶ m
and
=
= 9.231 N
Therefore the acceleration due to gravity =
/mass
9.231/1 or 9.231 m/s²
Therefore the acceleration due to gravity at 400 kn above the Earth's surface is 9.231 m/s²
Answer:
about 602 milliseconds
Explanation:
The motion can be approximated by the equation ...
y = -4.9t^2 -22.8t +15.5
where t is the time since the arrow was released, and y is the distance above the ground.
When y=0, the arrow has hit the ground.
Using the quadratic formula, we find ...
t = (-(-22.8) ± √((-22.8)^2 -4(-4.9)(15.5)))/(2(-4.9))
= (22.8 ± √823.64)/(-9.8)
The positive solution is ...
t ≈ 0.60195193
It takes about 602 milliseconds for the arrow to reach the ground.