The longer the time taken, the lower the power output.
This is since power is calculated through
Energy transferred / time
Increasing the denominator will lead to a lower value overall
<span> (ρ = m / V) hope this helps...:)</span>
Answer:
A) 37 m
Explanation:
The car is moving of uniformly accelerated motion, so the distance it covers can be calculated by using the following SUVAT equation:
(1)
where
v = 0 m/s is the final velocity of the car
u = 24 m/s is the initial velocity
a is the acceleration
d is the length of the skid
We need to find the acceleration first. We know that the force responsible for the (de)celeration is the force of friction, so:

where
m = 1000 kg is the mass of the car
is the coefficient of friction
a is the deceleration of the car
g = 9.8 m/s^2 is the acceleration due to gravity
The negative sign is due to the fact that the force of friction is against the motion of the car, so the sign of the acceleration will be negative because the car is slowing down. From this equation, we find:

And we can substitute it into eq.(1) to find d:

The energy of an electron as it is ejected from the atom can be calculated from the product of the Planck's constant and the frequency of the light energy. We can calculate the wavelength from the frequency we can calculate. We do as follows:
E = hv
4.41 x 10-19 = 6.62607004 × 10<span>-34 (v)
v = 6.66x10^14 /s
wavelength = speed of light / frequency
</span>
wavelength = 3x10^8 / 6.66x10^14
wavelength = 4.51x10^-7 m = 450.75 nm
Answer: 6.07 N
Explanation:
According to Coulomb's Law:
Where:
is the electrostatic force
is the Coulomb's constant
and
are the electric charges
is the separation distance between the charges
Solving: