1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
umka21 [38]
3 years ago
10

A woman on a bridge 82.2 m high sees a raft floating at a constant speed on the river below. She drops a stone from rest in an a

ttempt to hit the raft. The stone is released when the raft has 5.04 m more to travel before passing under the bridge. The stone hits the water 2.13 m in front of the raft. Find the speed of the raft.
Physics
1 answer:
solong [7]3 years ago
5 0

Answer:

0.71 m/s

Explanation:

We find the time it takes the stone to hit the water.

Using y = ut - 1/2gt² where y = height of bridge, u = initial speed of stone = 0 m/s, g = acceleration due to gravity = -9.8 m/s² (negative since it is directed downwards)and t = time it takes the stone to hit the water surface.

So, substituting the values of the variables into the equation, we have

y = ut - 1/2gt²

82.2 m = (0m/s)t - 1/2( -9.8 m/s²)t²

82.2 m = 0 + (4.9 m/s²)t²

82.2 m =  (4.9 m/s²)t²

t²  = 82.2 m/4.9 m/s²

t² = 16.78 s²

t = √16.78 s²

t = 4.1 s

This is also the time it takes the raft to move from 5.04 m before the bridge to 2.13 m before the bridge. So, the distance moved by the raft in time t = 4.1 s is 5.04 m - 2.13 m = 2.91 m.

Since speed = distance/time, the raft's speed v = 2.91 m/4.1 s = 0.71 m/s

You might be interested in
PLEASE HELP ME I DONT UNDERSTAND THIS AND THIS IS TIMED
mixer [17]

(C)

Explanation:

The circle has a radius r = 0.5 m, which means that its circumference C is

C = 2\pi r = 2\pi(0.5\:\text{m}) = 3.14\:\text{m}

One revolution means that the stopper travels a distance equal to the circumference of the circle so the velocity of the stopper is

v = \dfrac{C}{t} =\dfrac{3.14\:\text{m}}{0.2\:\text{s}} = 15.7\:\text{m/s} \approx 16\:\text{m/s}

5 0
2 years ago
Velocity of a Hot-Air Balloon A hot-air balloon rises vertically from the ground so that its height after t sec is given by the
Inessa [10]

Answer:

Explanation:

Given the height reached by a balloon after t sec modeled by the equation

h=1/2t²+1/2t

a) To calculate the height of the balloon after 40 secs we will substitute t = 40 into the modeled equation and calculate the value of t

If h(t)=1/2t²+1/2t

h(40) = 1/2(40)²+1/2 (40)

h(40) = 1600/2 + 40/2

h(40) = 800 + 20

h(40) = 820 feet

The height of the balloon after 40 secs is 820 feet

b) Velocity is the change of displacement of a body with respect to time.

v = dh/dt

v(t) = 2(1/2)t²⁻¹ + 1/2

v(t) = t + 1/2

when v = 0sec

v(0) = 0 + 1/2

v(0) = 1/2 ft/sec

at v = 30secs

v(30) = 30 + 1/2

v(30) = 30 1/2 ft/sec

average velocity = v(30) - v(0)

average velocity = 30 1/2 - 1/2

average velocity of the balloon between t = 0 and t = 30 = 30 ft/sec

c) Velocity is the change of displacement of a body with respect to time.

v = dh/dt

v(t) = 2(1/2)t²⁻¹ + 1/2

v(t) = t + 1/2

The velocity of the balloon after 30secs will be;

v(30) = 30+1/2

v(30) = 30.5ft/sec

The velocity of the balloon after 30 secs is 30.5 feet/sec

6 0
3 years ago
You stand on a frictional platform that is rotating at 1.8 rev/s. Your arms are outstretched, and you hold a heavy weight in eac
dusya [7]

Answer:

20.62361 rad/s

489.81804 J

Explanation:

I_i = Initial moment of inertia = 9.3 kgm²

I_f = Final moment of inertia = 5.1 kgm²

\omega_i = Initial angular speed = 1.8 rev/s

\omega_f = Final angular speed

As the angular momentum of the system is conserved

I_i\omega_i=I_f\omega_f\\\Rightarrow \omega_f=\dfrac{I_i\omega_i}{I_f}\\\Rightarrow \omega_f=\dfrac{9.3\times 1.8}{5.1}\\\Rightarrow \omega_f=3.28235\ rev/s=3.28235\times 2\pi=20.62361\ rad/s

The resulting angular speed of the platform is 20.62361 rad/s

Change in kinetic energy is given by

\Delta K=\dfrac{1}{2}(I_f\omega_f^2-I_i\omega_i^2)\\\Rightarrow \Delta K=\dfrac{1}{2}(5.1\times (20.62361)^2-9.3\times (1.8\times 2\pi)^2)\\\Rightarrow \Delta K=489.81804\ J

The change in kinetic energy of the system is 489.81804 J

As the work was done to move the weight in there was an increase in kinetic energy

6 0
3 years ago
If the average velocity during the athlete's walk back
goblinko [34]

Hence ,From the Guide there are other parameters which with this equation will give the exact time the athlete's walk back

T=\frac{d}{1.50}

From the question we are told

If the average velocity during the athlete's walk back  to the starting line in Guided Example 2.5 is – 1.50 m/s,

Generally the equation Time spent  is mathematically given as

T=\frac{d}{v}

Therefore

T=\frac{d}{1.50}

Hence ,From the Guide there are other parameters which with this equation will give the exact time the athlete's walk back

T=\frac{d}{1.50}

For more information on this visit

brainly.com/question/22271063

4 0
3 years ago
Plants absorb water from the soil through their roots. _______ of this water is used for photosynthesis; _______ of this water e
netineya [11]
THE CORRECT CHOICE IS B
3 0
3 years ago
Read 2 more answers
Other questions:
  • What is newstons 2nd law
    8·2 answers
  • What do most composites and plastics have in common?
    6·1 answer
  • The electrons that are gained or lost in an ionic bond are called...?
    10·1 answer
  • What does the heliocentric view of a solar system imply
    15·2 answers
  • A charge Q is uniformly distributed along the x axis from x = a to x = b. If Q = 45
    13·1 answer
  • I throw a ball upward at 40 m/s what is the acceleration
    7·1 answer
  • A thin, metallic spherical shell of radius 0.187 m has a total charge of 6.53×10−6 C placed on it. A point charge of 5.15×10−6 C
    6·1 answer
  • Jenny puts a book on her desk. she lifts the book up with her finger, using a force of 0.5N .The cover is 10cm wide .
    12·1 answer
  • While Steve is trekking in the Rocky Mountains, he realizes that he does not have a compass. He decides to find north direction
    8·1 answer
  • The cricket ball has a mass of 0.16kg and it hits the bat with a speed of 25 m/s. After being in contact with the bat for 0.0013
    10·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!