Vc BFF CFC. They. We’d 577755345
<span>Prefixes are used in the metric system to indicate smaller or larger measurements</span>
Answer: Its option "A" Both A and R are true and R is the correct explanation of A.
Hope it helps
Answer:
Explanation:
mass fraction N₂ : He : CH₄ : C₂H₆ : : 15 : 5 : 60 : 20
mole fraction N₂ : He : CH₄ : C₂H₆ : : 15/28 : 5/4 : 60/16 : 20/30
mole fraction N₂ : He : CH₄ : C₂H₆ : : .5357 : 1.25 : 3.75 : .67
Total mole fractions = .5357 + 1.25 + 3.75 + 0.67 = 6.2057
mole fraction of N₂ = .5357 / 6.2057 = .0877
mole fraction of He = 1.25 / 6.2057 = .20
mole fraction of CH₄ = 3.75 / 6.2057 = .6043
mole fraction of C₂H₆ = .67 / 6.2057 = .108
Partial pressure = total pressure x mole fraction
Partial pressure of N₂ = 1200 kPa x .0877 = 105.24 kPa
Partial pressure of He = 1200 kPa x .20 = 240 kPa
Partial pressure of CH₄ = 1200 kPa x .6043 = 725.16 kPa
Partial pressure of C₂H₆ = 1200 kPa x .108 = 129.6 kPa
Answer:
Cl⁻, Na⁺, OH⁻
Explanation:
The titration is:
CuCl₂(aq) + 2 NaOH(aq) → Cu(OH)₂(s) + 2 NaCl(aq)
In solution, before the reaction, the ions are Cu²⁺ and Cl⁻. The addition of NaOH (Na⁺ + OH⁻) produce the precipitation of Cu²⁺ forming Cu(OH)₂(s). When you reach the equivalence point, there is no Cu²⁺ because precipitates completely. All OH⁻ ions reacts when are added but when Cu²⁺ is finished, excess OH⁻ ions still in solution helping to detect the equivalence point.
Thus, ions present after the equivalence point are:<em> Cl⁻, Na⁺</em> (Don't react, spectator ions), and <em>OH⁻</em>.