Answer:
Q = 10.8 KJ
Explanation:
Given data:
Mass of Al= 100g
Initial temperature = 30°C
Final temperature = 150°C
Heat required = ?
Solution:
Specific heat of Al = 0.90 j/g.°C
Formula:
Q = m.c. ΔT
Q = amount of heat absorbed or released
m = mass of given substance
c = specific heat capacity of substance
ΔT = change in temperature
ΔT = 150°C - 30°C
ΔT = 120°C
Q = 100g×0.90 J/g.°C× 120°C
Q = 10800 J (10800j×1KJ/1000 j)
Q = 10.8 KJ
Ke=(1/2)mv^2, add up the mass of one carbon and two oxygen times it by velocity^2, divide by 2
Answer:
The wavelength, λ, of a photon that has an energy of E = 3.92×10⁻¹⁹ J is 5.054*10⁻⁷ m
Explanation:
The wavelength is defined for every periodic wave, that is, for the type of wave that repeats itself with exactly the same shape every given interval of time. It is the distance between two points from which the wave repeats.
Radiation is the emission, propagation and transfer of energy in any medium in the form of electromagnetic waves or particles.
The energy carried by electromagnetic radiation travels by waves. This energy is transmitted grouped in small "quanta" of energy called photons. The energy of a photon is measured in Joules (J) and is

Being:
- E=3.92×10⁻¹⁹ J
- h= 6.626×10⁻³⁴ J⋅s (Planck's constant)
- c = 2.99×10⁸ m/s (the speed of light)
- wavelength=?
and replacing:

you get:

wavelength= 5.054*10⁻⁷ m
<u><em>The wavelength, λ, of a photon that has an energy of E = 3.92×10⁻¹⁹ J is 5.054*10⁻⁷ m</em></u>
Answer:
1.69×10²⁹ molecules.
Explanation:
The following data were obtained from the question:
Mass of Ammonia (NH3) = 5.25 tons
Molecules of Ammonia (NH3) =.?
Next, we shall convert 5.25 tons to grams (g). This can be obtained as follow:
1 ton = 907184.74 g
Therefore,
5.25 ton = 5.25 ton × 907184.74 g / 1 ton
5.25 ton = 4762719.885 g
Therefore, 5.25 tons is equivalent to 4762719.885 g
Finally, we shall determine the number of molecules of ammonia, NH3 in 4762719.885 g. This can be obtained as follow:
From Avogadro's hypothesis, we understood that 1 mole of any substance contains 6.02×10²³ molecules. This implies that 1 mole of ammonia, NH3 also contains 6.02×10²³ molecules.
1 mole of ammonia, NH3 = 14 + (3x1) = 14 + 3 = 17 g
17 g of ammonia, NH3 contains 6.02×10²³ molecules.
Therefore, 4762719.885 g of ammonia, NH3 will contain = (4762719.885 × 6.02×10²³) / 17 = 1.69×10²⁹ molecules.
From the calculations made above,
5.25 tons (4762719.885 g) of ammonia, NH3 contains 1.69×10²⁹ molecules.
Answer:
oook
hi I am so sorry sorry sorry sorry I don't no answer
Explanation:
but you follow me and give me brainliest ok by by by by