I´d say "d" is the distance from the eye to the wall.
Now substracting 1.2-1 you´ll get the distance of the wall of the smallest triangle = 0.2 And you do 1.5-0.2= 0.3 that´s the distance of the wall of the other triangle. Then you solve everything with Pitagoras theorem. You have 2 rectangle triangles.
B+alfa=45°
tan^-1(0.2/d)=B
tan^-1(1.3/d)=alfa
THEN:
tan^-1(0.2/d)+tan^-1(1.3/d)=45°
Now you have 3 ecs and 3 variables.
alfa,B and "d"
A system of equations with infinitely many solutions is a system where the two equations are identical. The lines coincide. Anything that is equal to

will work. You could try multiply the entire equation by some number, or moving terms around, or adding terms to both sides, or any combination of operations that you apply to the entire equation.
You could multiply the whole thing by 4.5 to get

. If you want, you could mix things up and write it in slope-intercept form:

. The point is, anything that is equivalent to the original equation will give infinitely many solutions x and y. You can test this by plugging in values x and y and seeing the answers!
The attached graph shows that four different equations are really the same.
Answer:
Equation: 
Step-by-step explanation:
Slope = 4/3
Y-intercept = -3
Therefore;
Equation: y = mx + b
Equation: 
Hope this helps!
If you would like to solve <span>(8r^6s^3 – 9r^5s^4 + 3r^4s^5) – (2r^4s^5 – 5r^3s^6 – 4r^5s^4), you can do this using the following steps:
</span>(8r^6s^3 – 9r^5s^4 + 3r^4s^5) – (2r^4s^5 – 5r^3s^6 – 4r^5s^4) = 8r^6s^3 – 9r^5s^4 + 3r^4s^5 – 2r^4s^5 + 5r^3s^6 + 4r^5s^4 = 8r^6s^3 – 5r^5s^4 + r^4s^5<span> + 5r^3s^6
</span>
The correct result would be 8r^6s^3 – 5r^5s^4 + r^4s^5<span> + 5r^3s^6.</span>