Answer:
<h3>
a)</h3>




<u>=> R= 6 Ohms(Ω)</u>
<h3>b)</h3>

<em>these lights operate at the usual 240 volts direct from the main electricity supply. Therefore,</em>

<em>R and 100 can interchange places</em>


<u>=> R = 576 Ω</u>
<u></u>
By Ohm's Law:

=> 240 = I × 576
=>
=> I = 0.417 A
<h3 /><h3>c)</h3>
I don't know it's resistance,... so sorry
<h3>d)</h3>
The brightness of the bulb in series is <em><u>less than</u></em> when they're placed individually.
For bulbs in series their resistance gets added to form the equivalent resistance of the two bulbs.
Their resistances are nothing but mere numbers and the sum of two numbers(positive of course) is greater than the numbers.
So, the effective resistance of some bulbs in series <u>is more</u> than the individual resistance.
And
<em>Brightness, i. e., Power</em>

If resistance increases, Power decreases.
Here, the effective resistance was for sure larger, therefore resistance was increasing, hence power decreased taking brightness along with it.
Answer:
9.75 km
Explanation:
Charlie runs 6.5 km/hr
-> Charlie wants to run for 1.5 hours
6.5km + 6.5km/2
= 6.5 km + 3.25km
= 9.75 km
Sound moves faster in warmer temperature because the particles move faster
1. lifts it chest high
The force opposing to this action is the force due to
gravity. Therefore the work done is:
W1 = m g d
where m is mass of the barbell, g is gravity and d is displacement
2. holds it for 30 seconds
Work is a product of force and displacement, since there
is no displacement, therefore work done is zero.
W2 = 0
3. puts it down slowly
If the barbell was dropped, then it would simply be a free
fall. But since it was not, so the work done here is also equal to the weight
of the barbell times displacement:
W3 = m g d
We can see that W1 = W3, and since W2 = 0, therefore the answer
is:
<span>w3 = w1 > w2</span>
Answer:1) the total distance is the sum of the two distances
60 km + 45 km = 105 km
2) The displacement is the net movement, or the difference between the initial position and the final position
Call x the initial position, then the final position is x + [60km - 45km]
And the displacement is x + (60km - 45km) - x =60km -45 km = 15 km
Explanation: