C. It depends on the medium
The formula for kinetic energy is
KE = (1/2) (mass) (speed)² .
How you measure the object's mass and speed is up to you.
You'd need different methods for different objects, and in some
cases, you'd need quite a bit of ingenuity.
Answer:
v
Image result for What is the length of the hypotenuse of the triangle below
One way to solve this is to use Pythagorean theorem: the square of one leg of triangle plus square of other leg of the triangle equals c the hypotenuse (longest side of triangle). You might see this as the formula a^2 + b^2 = c^2, where a and b are the legs and c is the hypotenuse.Nov 23, 2016
Explanation:
<span>160 Joules
For this problem, we can ignore the vertical component of the applied force and focus on only the horizontal component of 80 N and since work is defined as force over distance, let's multiply the force by the distance:
80 N * 2.0 m = 160 Nm = 160 kg*m^2/s^2 = 160 Joules.
So the cart has a final kinetic energy of 160 Joules.</span>
Answer:
Momentum of system = 37.2 Kgm/s.
Explanation:
<u>Given the following data;</u>
- Mass A = 5 kg
- Velocity A = 6 m/s
- Mass B = 12 kg
- Velocity B = 0.6 m/s
To find the momentum of the system;
Momentum can be defined as the multiplication (product) of the mass possessed by an object and its velocity. Momentum is considered to be a vector quantity because it has both magnitude and direction.
Mathematically, momentum is given by the formula;
Momentum = mass * velocity
<u>For object A;</u>
Momentum A = 5 * 6
Momentum A = 30 Kgm/s
<u>For object B;</u>
Momentum B = 12 * 0.6
Momentum B = 7.2 Kgm/s
Next, we would determine the momentum of this system using the formula;
Momentum of system = Momentum A + Momentum B
Substituting the values into the formula, we have;
Momentum of system = 30 + 7.2
<em>Momentum of system = 37.2 Kgm/s.</em>