Answer:
<em>Alkali metals are among the most reactive metals. This is due in <u>part to their larger atomic radii and low ionization energies.</u> They tend to donate their electrons in reactions and have an oxidation state of +1. ... All these characteristics can be attributed to these elements' large atomic radii and weak metallic bonding.</em>
Explanation:
<em>I </em><em>hope</em><em> it</em><em> will</em><em> help</em><em> you</em><em>.</em><em>.</em><em>.</em><em>.</em><em>.</em>
<em>#</em><em>C</em><em>A</em><em>R</em><em>R</em><em>Y</em><em>O</em><em>N</em><em>L</em><em>E</em><em>R</em><em>A</em><em>N</em><em>I</em><em>N</em><em>G</em>
Answer: Temperature = T, unknown
Saturated Solution, NH4Cl concentration = 60g/100g H2O = 0.6g NH4Cl/g H2O
Assume density of H2O = 1 g/ml
m = 0.6g NH4Cl/g H2O / 1 g/ml
m = 0.6g NH4Cl/ml
See the table of saturated solutions and identify the temperature at which the concentration of NH4Cl is 60g/100g H2O.
Explanation: The line on the graph on reference table G indicates a saturated solution of NH4CL as a concentration of 60. g NH4 Cl/100. g H2O
The molecular weight of NaCl is 58.44 g/mol.
0.575 mol * 58.44 g/mol = 33.6 grams of NaCl
Answer:
Copper is more reactive and higher in the activity series
Explanation:
Copper is able to replace the silver in a replacement reaction because it is more reactive and higher in the activity series.
Substances or ions that are higher in the activity series are typically more reactive than those ones below them.
In like manner, they are able to replace the lowers ones in a chemical reaction due to their higher reactivity potential.
A less reactive element and a lower one in the activity series cannot displace a higher one in the series.