Answer:
Kc = 12.58
Explanation:
Kc = [0.229]^2*[0.687]^6/[0.221]^4*[0.5685]^3
Kc = (0.052441)(0.10513)/(0.002385)(0.18373)
Kc = 0.0005513/0.000438
Kc = 12.58
Hope that helps!!
Molality is obtained by dividing the number of moles of solute by the mass in kilogram of the solvent. None of the dimensions is dependent in temperature. On the other hand, molarity is obtained by dividing the number of moles of solute by the volume in liters of the solution. Volume is temperature dependent.
Temperature can change a reaction rate because adding or taking away heat means energy is being added or taken away. When energy is added, the particles speed up, so there is a greater chance of the reactants colliding to form the products, which increases the reaction rate. When energy is taken away, the particles more slower, so they don't collide as easily, which slows down the reaction rate.
Therefore, the answer is D.
Lipid you can look up the chemical structures and lipids are the longest which make them the largest
<h3>
Answer:</h3>
0.111 J/g°C
<h3>
Explanation:</h3>
We are given;
- Mass of the unknown metal sample as 58.932 g
- Initial temperature of the metal sample as 101°C
- Final temperature of metal is 23.68 °C
- Volume of pure water = 45.2 mL
But, density of pure water = 1 g/mL
- Therefore; mass of pure water is 45.2 g
- Initial temperature of water = 21°C
- Final temperature of water is 23.68 °C
- Specific heat capacity of water = 4.184 J/g°C
We are required to determine the specific heat of the metal;
<h3>Step 1: Calculate the amount of heat gained by pure water</h3>
Q = m × c × ΔT
For water, ΔT = 23.68 °C - 21° C
= 2.68 °C
Thus;
Q = 45.2 g × 4.184 J/g°C × 2.68°C
= 506.833 Joules
<h3>Step 2: Heat released by the unknown metal sample</h3>
We know that, Q = m × c × ΔT
For the unknown metal, ΔT = 101° C - 23.68 °C
= 77.32°C
Assuming the specific heat capacity of the unknown metal is c
Then;
Q = 58.932 g × c × 77.32°C
= 4556.62c Joules
<h3>Step 3: Calculate the specific heat capacity of the unknown metal sample</h3>
- We know that, the heat released by the unknown metal sample is equal to the heat gained by the water.
4556.62c Joules = 506.833 Joules
c = 506.833 ÷4556.62
= 0.111 J/g°C
Thus, the specific heat capacity of the unknown metal is 0.111 J/g°C