I’m sorry I just really need points rn I love you
Answer:
Multiply 1.25 by 0.04 and divide the result obtained by 1,000
Explanation:
Since there is .04 oz in 1 gram, we take the 1.25 gram and multiply by .04.
Next, to convert per liter to per milliliter, we divide by 1,000.
Answer:
The value of the missing equilibrium constant ( of the first equation) is 1.72
Explanation:
First equation: 2A + B ↔ A2B Kc = TO BE DETERMINED
⇒ The equilibrium expression for this equation is written as: [A2B]/[A]²[B]
Second equation: A2B + B ↔ A2B2 Kc= 16.4
⇒ The equilibrium expression is written as: [A2B2]/[A2B][B]
Third equation: 2A + 2B ↔ A2B2 Kc = 28.2
⇒ The equilibrium expression is written as: [A2B2]/ [A]²[B]²
If we add the first to the second equation
2A + B + B ↔ A2B2 the equilibrium constant Kc will be X(16.4)
But the sum of these 2 equations, is the same as the third equation ( 2A + 2B ↔ A2B2) with Kc = 28.2
So this means: 28.2 = X(16.4)
or X = 28.2/16.4
X = 1.72
with X = Kc of the first equation
The value of the missing equilibrium constant ( of the first equation) is 1.72
Answer:
False
Explanation:
The octet rule forms the basis for chemical reactions. The octet rule states that; an atom is only stable when it has eight electrons around its outermost shell.
This implies that the driving force behind chemical reaction is the attainment of an octet structure(eight electrons in the outermost shell of each of the bonding atoms).
An atom that has only six electrons in its outermost shell is not yet stable according to the demand of the octet rule. Hence, the statement "chemical reactions happen and compounds form because they're trying to get 6 electrons in their outer orbitals" is false.