A) 4400 kj of heat released into surroundings
<h3>Further explanation</h3>
Reaction
C3H8(g) + 5 O2(g) → 3 CO2(g) + 4 H2O, the ∆H is –2200 kJ
Reaction exothermic( ∆H=-, released heat to surrounding) and for combustion of 1 mole of C3H8
So for two moles of C3H8, the enthalpy :

<span>The number of electrons in an atom's outermost valence shell governs its bonding behavior.
In N</span>₂, three electrons are being shared by each nitrogen atom, making a total of 6 shared electrons.
In CCl₄, 4 electrons are being shared by each carbon atom and 1 electron is being shared by each chlorine atom
In SiO₂, 4 electrons are being shared by each silicon atom and 2 electrons are being shared by each oxygen atom.
In AlCl₃, 3 electrons are being shared by each aluminum atom and 1 electron is being shared by each Cl atom
In CaCl₂, 2 electrons are lost by the calcium atom and 1 electron is gained by each chlorine atom
In LiBr, 1 electron is lost by the lithium atom and 1 electron is gained by the bromine atom
Answer:
It's 1, places that are closer to the equator receive more direct sunlight and have
Explanation:
Answer:
The answer to your question is 1.1 moles of water
Explanation:
2Al(OH)₃ + 3H₂SO₄ ⇒ Al₂(SO₄)₃ + 6H₂O
0.45 mol 0.55 mol ?
Process
1.- Calculate the limiting reactant
Theoretical proportion
Al(OH)₃ / H₂SO₄ = 2/3 = 0.667
Experimental proportion
Al(OH)₃ / H₂SO₄ = 0.45 / 0.55 = 0.81
From the proportions, we conclude that the limiting reactant is H₂SO₄
2.- Calculate the moles of H₂O
3 moles of H₂SO₄ ---------------- 6 moles of water
0.55 moles of H₂SO₄ ----------- x
x = (0.55 x 6) / 3
x = 3.3 / 3
x = 1.1 moles of water
Since 1mL=1cm^3 the wood would sink due to it being more dense. I.e. 0.95>0.88