Answer:
There is one single covalent bond between two carbon atoms.
Explanation:
We know that sharing of electrons form covalent bonds.
If we look upon K,L,M ,N shells of the carbon and hydrogen atoms.
We found that Hydrogen is having only
electron in K shell.
And Carbon on the other hand is having
electrons in K shell and
electrons in L shell.
So carbon have
valence electrons,and it can share
bonds with any relevant atom to complete its octet.
And Hydrogen requires
electron to complete its doublet.
Alkane general formula 
For ethane 

Carbon atom is shared by
Hydrogen.
The remaining one electron
of carbon will be shared with another carbon atom.
An image of the sharing of electrons attached below,
Hence we have only
covalent bond between the two.
40. Because sodium chloride is NaCl
Boiling is the process by which a liquid turns into a vapor when it is heated to it’s boiling point. The change from a liquid phase to a gaseous phase occurs when the vapor pressure of the liquid is equal to the atmospheric pressure exerted on the liquid. Boiling is a physical change and molecules are not chemically altered during the process.
Hope that helped!
Answer:
115.2 °C since melting point is an intensive property
Step-by-step explanation:
The melting point of a substance does not depend on how much you have.
For example, the melting point of water is 0 °C, whether it is an ice cube from the refrigerator or in the frozen pond outside.
The freezing point of a substance is an <em>intensive property</em>.
Thus, the melting point of 100 g of sulfur is 115.2 °C because melting point in an intensive property.
Resonance, leaving group, carbonyl carbon delta+, and steric effect is the most crucial variables that affect the relative reactivity of a functional group containing a carbonyl in an addition or substitution process.
Discussion:
1. Carbonyl Carbon Delta+: The carbonyl group becomes more electrophilic and accelerates nucleophilic assault when the carbonyl carbon delta+ is bigger.
2. Resonance: When the carbonyl is transformed into the tetrahedral adduct, it may be lost. Loss of resonance increases the energy of the transition state for this nucleophilic assault because resonance has the function of stabilizing. Therefore, a carbonyl functional group's resistance to nucleophilic attack increases as resonance in the group increases in importance.
3. Leaving group: Tetrahedral adduct fragmentation is encouraged by a better LG.
4. Steric effects: The nucleophilic attack on carbonyl carbon is delayed when sterically impeded.
Learn more about carbonyl here:
brainly.com/question/21440134
#SPJ4