Answer:
The structure with the ring flipped is the most stable
Explanation:
We have the trans 1,2 - dimethylcyclohexane. With the wedge/dash structure we could not figure is this form is stable (If we do a comparison with the cis structure). But when we do a chair structure and ring flipped structure, this is easier to look.
The picture attached shows the structures, they are labeled as 1, 2 and 3, according to this problem.
In the chair structure, according to the picture below, you can see that both methyls are heading in the axial positions of the ring (One facing upward and the other downward). This is pretty stable, however, when the methyls are in those positions, the methyl position 1, can undergoes an 1,3 diaxial interactions with the hydrogens atoms (They are not drawn, but still are there), so this interaction makes this structure a little less stable that it can be.
On the other side, the ring flipped structure, we can see that both methyls are in the equatorials positions of the ring, and in these positions, it can avoid the 1,4 diaxial interactions with the hydrogens atoms, making this structure the most stable structure.
Hope this helps
The heat required to raise the temperature to a specific temperature change of a sample is related to the specific heat capacity of the substance. In this case, the heat can be calculated through mCpΔT = 350 g * 0.39 J/g C *25 C. This is equal to 3412. 5 Joules. Closest answer is C.
Each water molecule consists of two atoms of the element hydrogen joined to one atom of the element oxygen. An interesting property of water is the ability of its molecules to “stick together.” This occurs because one side of each water molecule is slightly negative and the other side is slightly positive. The positive portion of a water molecule is attracted to the negative portion of an adjacent water molecule. As a result, water molecules are called polar molecules. They attract other water molecules like little magnets. It is most likely ionic bonding but between hydrogen and oxygen it is covalent.
<span />