Answer:
Calculate the unknown variable in the equation for gravitational potential energy, where potential energy is equal to mass multiplied by gravity and height; PE = mgh. Calculate for different gravity of different enviornments - Earth, the Moon, Jupiter, or specify your own. Free online physics calculators, mechanics, energy, calculators.
Explanation:
Answer and Explanation:
As the temperature of the substances increases, the average energy of the molecules increases, and average energy of attraction between the molecules decreases consequently intermolecular spacing between the molecules increases. As a result, a substance change in succession from gas to liquid to solid.
Answer : The balanced chemical reaction will be:

Explanation :
Single replacement reaction : A chemical reaction in which the more reactive element replace the less reactive element.
It is represented as,

In this reaction, A is more reactive element and B is less reactive element.
As per question, when gold (IV) iodide react with bromine to give gold (IV) bromide and iodine.
The balanced chemical reaction will be:

Answer:
0.45 moles
Explanation:
The computation of the number of moles left in the cylinder is shown below:
As we know that

we can say that

where,
n1 = 1.80 moles of gas
V2 = 12.0 L
And, the V1 = 48.0 L
Now placing these values to the above formula
So, the moles of gas in n2 left is

= 0.45 moles
We simply applied the above formulas so that the n2 moles of gas could arrive
Answer:
C) 712 KJ/mol
Explanation:
- ΔH°r = Σ Eb broken - Σ Eb formed
- 1/2Br2(g) + 3/2F2(g) → BrF3(g)
∴ ΔH°r = - 384 KJ/mol
∴ Br2 Eb = 193 KJ/mol
∴ F2 Eb = 154 KJ/mol
⇒ Σ Eb broken = (1/2)(Br-Br) + (3/2)(F-F)
⇒ Σ Eb broken = (1/2)(193 KJ/mol) + (3/2)(154 KJ/mol) = 327.5 KJ/mol
∴ Eb formed: Br-F
⇒ Σ Eb formed (Br-F) = Σ Eb broken - ΔH°r
⇒ Eb (Br-F) = 327.5 KJ/mol - ( - 384 KJ/mol )
⇒ Eb Br-F = 327.5 KJ/mol + 384 KJ/mol = 711.5 KJ/mol ≅ 712 KJ/mol