Answer:
Try (
−
∞
,
∞
)
Step-by-step explanation:
OK so, I copied and pasted that so try to put it together lol
Answer:
1st picture: (0,4)
The lines intersect at point (0,4).
2nd picture: Graph D
2x ≥ y - 1
2x - 5y ≤ 10
Set these inequalities up in standard form.
y ≤ 2x + 1
-5y ≤ 10 - 2x → y ≥ -2 + 2/5x → y ≥ 2/5x - 2
When you divide by a negative number, you switch the inequality sign.
Now you have:
y ≤ 2x + 1
y ≥ 2/5x - 2
Looking at the graphs, you first want to find the lines that intersect the y-axis at (0, 1) and (0, -2).
In this case, it is all of them.
Next, you would look at the shaded regions.
The first inequality says the values are less than or equal to. So you look for a shaded region below a line. The second inequality says the values are greater than or equal to. So you look for a shaded region above a line.
That would mean Graph B or D.
Then you look at the specific lines. You can see that the lower line is y ≥ 2/5x - 2. You need a shaded region above this line. You can see the above line is y ≤ 2x + 1. You need a shaded region below this line. That is Graph D.
The question is incomplete. Here is the complete question.
As a part of city building refurbishment project, architects have constructed a scale model of several city builidings to present to the city commission for approval. The scale of the model is 1 inch = 9 feet.
The model includes a new park in the center of the city. If the dimensions of the park in the model are 9 inches by 17 inches, what are the actual dimensions of the park?
Answer: 81 feet by 153 feet
Step-by-step explanation: <u>Unit</u> <u>Scale</u> is a ratio comparing actual dimensions of an object to the dimensions of model representing the actual object.
In the refurbishment project, the unit scale is given by
1 inch = 9 feet
So, the dimensions of the new park in actual dimensions would be
1 inch = 9 feet
9 inches = x
x = 9.9
x = 81 feet
1 inch = 9 feet
17 inches = y
y = 17.9
y = 153 feet
The actual dimensions of the new park are 81 feet by 153 feet.
Answer:
scale factor = 1.2
Step-by-step explanation:
To determine the scale factor, calculate the ratio of the length of the second rectangle to the length of the first rectangle. The corresponding ratio of widths should also equal the same ratio.
scale factor =
=
= 1.2