Answer:
Explanation:
Given:
V1 = 200 ml
T1 = 20 °C
= 20 + 273
= 293 K
P1 = 3 atm
P2 = 2 atm
V2 = 400 ml
Using ideal gas equation,
P1 × V1/T1 = P2 × V2/T2
T2 = (2 × 400 × 293)/200 × 3
= 234400/600
= 390.67 K
= 390.67 - 273
= 117.67 °C
It would be Violet because it has the shortest wave length, while red has the longest wave length so it comes out the least of the colors.
Answer:
<h3>The answer is 1.84 g/mL</h3>
Explanation:
The density of a substance can be found by using the formula

From the question we have

We have the final answer as
<h3>1.84 g/mL</h3>
Hope this helps you
Unrestricted populations of organisms experience Exponential growth.
As a population reaches is carrying capacity there is an increase in competition for All of the above.
Hope I helped.
To figure out the ratios of these compounds, it is important to remember that the charge of these compounds must be <em>
neutral</em>.
So in order to make them neutral, you must have specific ratios:

; This is true because they both have a charge of magnitude of 1.

; We need 3 chlorine atoms because we need to balance out the charge from the 3+ charge of aluminum - therefore since chlorine has a 1- charge, we need 3 atoms.

; The charges of the magnesium (2+) are balanced with the oxygen charge (2-).

; This is correct because if charges are like this, you must find the least common factor in order to know the ratio. The LCF is 6, therefore, for the atom with a 3+ charge, you need 2 of them, and for the atom with a 2- charge, you need 3 of them. This keeps the charge neutral.