<u>Answer:</u> The ion that is expected to have a larger radius than the corresponding atom is chlorine.
<u>Explanation:</u>
There are two types of ions:
- <u>Cations:</u> They are formed when an atom looses its valence electrons. They are positive ions.
- <u>Anions:</u> They are formed when an atom gain electrons in its outermost shell. They are negative ions.
For positive ions, the removal of electron increases the nuclear charge for an outermost electron because the outermost electrons are more strongly attracted by the nucleus. So, the effective nuclear charge increases for cations and thus, the size of the cation will be smaller than that of the corresponding atom.
For negative ions, the addition of electron decreases the nuclear charge for an outermost electron because the outermost electrons are less strongly attracted by the nucleus. So, the effective nuclear charge decreases for anions and thus, the size of the anion will be larger than that of the corresponding atom.
For the given options:
<u>Option a:</u> Chlorine
Chlorine gains 1 electron and form
ion
<u>Option b:</u> Sodium
Sodium looses 1 electron and form
ion
<u>Option c:</u> Copper
Copper looses 2 electrons and form
ion
<u>Option d:</u> Strontium
Strontium looses 2 electrons and form
ion
Hence, the ion that is expected to have a larger radius than the corresponding atom is chlorine.
Answer:
Copper
Explanation:
Within intermolecular forces, ion-dipole is the strongest, followed by hydrogen bonding, then dipole-dipole, and then London dispersion.
Ionization energy refers to the amount of energy needed to remove an electron from an atom. Ionization energy decreases as we go down a group. Ionization energy increases from left to right across the periodic table.
<h3>What is ionization energy?</h3>
Ionization is the process by which ions are formed by the gain or loss of an electron from an atom or molecule.
Ionization energy is defined as the energy required to remove the most loosely bound electron from a neutral gaseous atom.
When we move across a period from left to right then there occurs a decrease in atomic size of the atoms. Therefore, ionization energy increases along a period but decreases along a group.
Smaller is the size of an atom more will be the force of attraction between its protons and electrons. Hence, more amount of energy is required to remove an electron.
Thus, we can conclude that the energy required to remove an electron from a gaseous atom is called ionization energy.
Learn more about the ionization energy here:
brainly.com/question/14294648
#SPJ1
Answer:
A Neutron and a Hydrogen Atom
Explanation:
Hydrogen atom having an atomic mass of 1.008 amu consists of one proton and one electron. Hence, the +ve and -ve charges cancels out and makes the hydrogen atom a neutral specie.
Also, we know that neutron is neutral sub particle while, proton and electron are positively and negatively charged respectively. Therefore, a neutral neutron having no charge becomes equal to hydrogen atom having zero charge due to cancellation of both +ve and -ve charges.
To solve for the absolute temperature, we assume ideal gas
behaviour so that we use the equation:
PV = nRT
or T = PV / nR
So calculating:
T = [6.6 atm * 0.40 L] / [(2.4g / 28g/mol) * 0.08205746 L
atm / mol K]
<span>T = 375.35 K</span>