answer
changing the temperature and increase in the pressure
Change in concentration, pressure, catalyst, inert gas addition, etc. have no effect on concentration, pressure, catalyst, inert gas addition lead to a shift in equilibrium position .
A reducing agent is one which is oxidised in the reaction itself. When you take into account the oxidation numbers you will see that the Cl- ions are oxidised from an oxidation number of -1 to 0 in Cl2. Therefore Cl- ions are the reducing agent.
Answer:
Exergonic ,Endergonic,low concentration area,high
Explanation:
In exergonic reaction,certain molecules are broken down;in the process they release energy which is captured when high energy molecules(such as ATP and NADH) are formed.
The breakdown of these molecules can be coupled to thermodynamically unfavorable processes such as Endergonic reactions or pumping og hydrogen ion from low concentration areas to high concentration areas.
Blocks on the periodic table will not list a mass number of elements in this scenario.
<h3>What is Periodic table?</h3>
This table comprises of elements in order of their atomic number which determines their chemical properties.
It contains the atomic number but however doesn't contain the mass number of the elements.
Read more about Periodic table here brainly.com/question/15987580
#SPJ12
Answer:
Molar absorptivity or molar extinction co-effecient = 2120.14 cm⁻¹M⁻¹
Explanation:
First convert Concentration from ppm inM or mol/l
⇒ Molar mass of KMnO₄ = 158.03 g
⇒ 4.48 ppm = 4.48 mg/l = 4.48 x 10⁻³ g/l
⇒ Molarity =
= 2.83 x 10⁻⁵ molar
Absorbance (A) = - log(T) ( T = % transmittance)
= - log(0.859)
= 0.06
According to Lambert Beer's law
ε = 
or, ε = 
or, ε = 2120.14 cm⁻¹M⁻¹
Where
ε = Molar absorptivity
A = absorbance
C = Molar concentration of KMnO₄ solution
l = length